Comparison of smartphone and lab-grade NIR spectrometers to measure chemical composition of lamb and beef

背景(考古学) 环境科学 智能手机应用程序 近红外光谱 作文(语言) 食品科学 化学 计算机科学 生物 语言学 互联网隐私 哲学 古生物学 神经科学
作者
Cassius E.O. Coombs,Mario Fajardo,L. A. González
出处
期刊:Animal Production Science [CSIRO Publishing]
卷期号:61 (16): 1723-1733 被引量:3
标识
DOI:10.1071/an21069
摘要

Context Near-infrared reflectance spectroscopy (NIRS) has been extensively investigated for non-destructive and rapid determination of pH and chemical composition of meat including water, crude protein, intramuscular fat (IMF) and stable isotopes. Smaller, cheaper NIRS sensors that connect to a smartphone could enhance the accessibility and uptake of this technology by consumers. However, the limited wavelength range of these sensors could restrict the accuracy of predictions compared with benchtop laboratory NIRS models. Aims To compare the precision and accuracy metrics of predicting pH, water, crude protein and IMF of three sample presentations and two sensors. Methods Fresh intact (FI) store-bought beef and lamb steak samples (n = 43) were ground and freeze-dried (FD), and then oven-dried to create freeze-dried oven-dried (FDOD) samples. All three forms of sample presentation (FI, FD, FDOD) were scanned using the smartphone and benchtop NIRS sensors. Key results The IMF was the best predicted trait in FD and FDOD forms by the smartphone NIRS (R2 >0.75; RPD >1.40) with limited differences between the two sensors. However, predictions on FI meat were poorer for all traits regardless of the NIRS scanner used (R2 ≤ 0.67; RPD ≤ 1.58) and not suitable for use in research or industry. Conclusion The smartphone NIRS sensor showed accuracy and precision comparable to benchtop NIRS to predict meat composition. However, these preliminary results found that neither of the two sensors reliably predicted quality attributes for industry or consumer applications. Implications Miniaturised NIRS sensors connected to smartphones could provide a practical solution to measure some meat quality attributes such as IMF, but the accuracy depends on sample presentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YJM应助红箭烟雨采纳,获得10
6秒前
苏子轩完成签到 ,获得积分10
11秒前
最美夕阳红完成签到,获得积分10
13秒前
快船总冠军完成签到 ,获得积分10
19秒前
harden9159完成签到,获得积分10
20秒前
红箭烟雨完成签到,获得积分10
29秒前
mrwang完成签到 ,获得积分10
29秒前
30秒前
傻傻的哈密瓜完成签到,获得积分10
32秒前
聪明十三发布了新的文献求助10
34秒前
温水完成签到 ,获得积分10
36秒前
40秒前
orixero应助fddd采纳,获得10
45秒前
QIQI发布了新的文献求助10
45秒前
鼻揩了转去完成签到,获得积分0
46秒前
充电宝应助QIQI采纳,获得10
54秒前
笨笨忘幽完成签到,获得积分10
55秒前
勤恳的书文完成签到 ,获得积分10
58秒前
1分钟前
科研通AI2S应助FloppyWow采纳,获得10
1分钟前
jue完成签到 ,获得积分10
1分钟前
张尧摇摇摇完成签到 ,获得积分10
1分钟前
fddd发布了新的文献求助10
1分钟前
榆木小鸟完成签到 ,获得积分10
1分钟前
狐狸小姐完成签到 ,获得积分10
1分钟前
艳艳宝完成签到 ,获得积分10
1分钟前
ShiyuZuo完成签到 ,获得积分10
1分钟前
天行健完成签到,获得积分10
1分钟前
完美梨愁完成签到 ,获得积分10
1分钟前
yk完成签到 ,获得积分10
1分钟前
聪明的秋天完成签到 ,获得积分10
1分钟前
邢夏之完成签到 ,获得积分10
1分钟前
鞑靼完成签到 ,获得积分10
1分钟前
乐观海云完成签到 ,获得积分10
1分钟前
曹官子完成签到 ,获得积分10
1分钟前
千玺的小粉丝儿完成签到,获得积分10
1分钟前
Arthur完成签到 ,获得积分10
2分钟前
开心夏旋完成签到 ,获得积分10
2分钟前
CLTTT完成签到,获得积分10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544501
求助须知:如何正确求助?哪些是违规求助? 3121683
关于积分的说明 9348222
捐赠科研通 2819981
什么是DOI,文献DOI怎么找? 1550555
邀请新用户注册赠送积分活动 722591
科研通“疑难数据库(出版商)”最低求助积分说明 713292