Efficient high-dimension feature selection based on enhanced equilibrium optimizer

计算机科学 特征选择 元启发式 初始化 模式识别(心理学) 排名(信息检索) 数据挖掘 特征(语言学) 人工智能 算法 语言学 哲学 程序设计语言
作者
Salima Ouadfel,Mohamed Abd Elaziz
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:187: 115882-115882 被引量:32
标识
DOI:10.1016/j.eswa.2021.115882
摘要

Feature selection (FS) is an important task in any classification process and aims to choose the smallest features number that yields higher classification accuracy. FS can be formulated as a combinatorial NP-hard problem for which robust metaheuristics are used as efficient wrapper-based FS approaches. However, when applied for high dimensional datasets that present large features number and few samples, the effectiveness of such wrapper-metaheuristics degraded, and their computation costs increased. To tackle this problem, we propose in this paper a hybrid FS approach based on the ReliefF filter method and a novel metaheuristic Equilibrium Optimizer (EO). The proposed method, called RBEO-LS, is composed of two phases. In the first phase, the ReliefF algorithm is used as a preprocessing step to assign weights for features, which estimate their relevance to the classification task. In the second phase, the binary EO (BEO) is used as a wrapper search approach. The features are ranked according to their weights and are used for the initialization of the BEO population. We embedded the BEO with a local search strategy to improve its performance by adding relevant features and removing redundant ones from the features subset guided by the features ranking and the Pearson coefficient correlation. The performance of the developed algorithm has been evaluated on sixteen UCI datasets and ten high dimensional biological datasets. The UCI datasets contain a high number of samples and a small or medium number of features. The biological datasets present a high number of features with few samples. The results demonstrate that the use of the ReliefF algorithm and the local search strategy improves the performance of the EO algorithm. The results also show the superiority of the RBEO-LS, among other state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助h_cl采纳,获得10
刚刚
刚刚
longzhixin发布了新的文献求助10
刚刚
青青完成签到,获得积分10
1秒前
潇z发布了新的文献求助10
1秒前
Jasper应助jason04124采纳,获得10
2秒前
简单的海秋完成签到,获得积分10
3秒前
Jasper应助XiaoM采纳,获得10
3秒前
苦哈哈完成签到,获得积分10
3秒前
3秒前
4秒前
Echo完成签到,获得积分10
5秒前
今后应助刘清河采纳,获得10
5秒前
xsd完成签到,获得积分10
5秒前
mazhifei发布了新的文献求助10
6秒前
7秒前
汉堡包应助疏桐采纳,获得10
7秒前
7秒前
香蕉觅云应助学术流浪汉采纳,获得10
7秒前
8秒前
CodeCraft应助熊猫小宇采纳,获得10
9秒前
DAN_完成签到,获得积分10
9秒前
10秒前
10秒前
iNk应助孤竹一直采纳,获得10
10秒前
DD立芬完成签到 ,获得积分10
10秒前
精神的精神病完成签到,获得积分10
10秒前
静xixi发布了新的文献求助10
10秒前
yar应助lfl采纳,获得10
11秒前
完美世界应助想粗去丸采纳,获得10
11秒前
hucchongzi应助taoeric采纳,获得10
11秒前
夏侯一鸣发布了新的文献求助10
13秒前
15秒前
兴奋涵雁完成签到,获得积分10
15秒前
深情安青应助静xixi采纳,获得10
15秒前
16秒前
16秒前
oaim完成签到,获得积分10
16秒前
清清甜发布了新的文献求助10
17秒前
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296982
求助须知:如何正确求助?哪些是违规求助? 2932577
关于积分的说明 8457843
捐赠科研通 2605253
什么是DOI,文献DOI怎么找? 1422179
科研通“疑难数据库(出版商)”最低求助积分说明 661332
邀请新用户注册赠送积分活动 644534