Efficient high-dimension feature selection based on enhanced equilibrium optimizer

计算机科学 特征选择 元启发式 初始化 模式识别(心理学) 排名(信息检索) 数据挖掘 特征(语言学) 人工智能 算法 语言学 哲学 程序设计语言
作者
Salima Ouadfel,Mohamed Abd Elaziz
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:187: 115882-115882 被引量:32
标识
DOI:10.1016/j.eswa.2021.115882
摘要

Feature selection (FS) is an important task in any classification process and aims to choose the smallest features number that yields higher classification accuracy. FS can be formulated as a combinatorial NP-hard problem for which robust metaheuristics are used as efficient wrapper-based FS approaches. However, when applied for high dimensional datasets that present large features number and few samples, the effectiveness of such wrapper-metaheuristics degraded, and their computation costs increased. To tackle this problem, we propose in this paper a hybrid FS approach based on the ReliefF filter method and a novel metaheuristic Equilibrium Optimizer (EO). The proposed method, called RBEO-LS, is composed of two phases. In the first phase, the ReliefF algorithm is used as a preprocessing step to assign weights for features, which estimate their relevance to the classification task. In the second phase, the binary EO (BEO) is used as a wrapper search approach. The features are ranked according to their weights and are used for the initialization of the BEO population. We embedded the BEO with a local search strategy to improve its performance by adding relevant features and removing redundant ones from the features subset guided by the features ranking and the Pearson coefficient correlation. The performance of the developed algorithm has been evaluated on sixteen UCI datasets and ten high dimensional biological datasets. The UCI datasets contain a high number of samples and a small or medium number of features. The biological datasets present a high number of features with few samples. The results demonstrate that the use of the ReliefF algorithm and the local search strategy improves the performance of the EO algorithm. The results also show the superiority of the RBEO-LS, among other state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助梦醒时采纳,获得10
1秒前
隐形曼青应助如意巨人采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
orixero应助独特凌萱采纳,获得10
2秒前
chlachj完成签到,获得积分20
3秒前
脑洞疼应助nenoaowu采纳,获得10
3秒前
怕黑犀牛发布了新的文献求助10
3秒前
4秒前
5秒前
shasha完成签到,获得积分10
5秒前
科研通AI6应助无私代芹采纳,获得10
6秒前
6秒前
7秒前
7秒前
9秒前
爆米花应助昕昕233采纳,获得20
10秒前
nenoaowu完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
Wangyn完成签到,获得积分10
10秒前
伯喈完成签到,获得积分10
10秒前
Duomo完成签到 ,获得积分10
11秒前
笨笨百招完成签到,获得积分10
11秒前
xiaoxiao完成签到,获得积分10
12秒前
Jupiter 1234发布了新的文献求助10
13秒前
13秒前
14秒前
LIGHT完成签到,获得积分10
14秒前
成长完成签到,获得积分10
14秒前
芳菲依旧应助chlachj采纳,获得40
14秒前
清爽老九完成签到,获得积分10
14秒前
希望天下0贩的0应助wangqq采纳,获得10
14秒前
无极微光应助叶白山采纳,获得20
15秒前
Akim应助twob采纳,获得10
15秒前
研友_IEEE快到碗里来完成签到,获得积分20
15秒前
15秒前
香橙完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660323
求助须知:如何正确求助?哪些是违规求助? 4833206
关于积分的说明 15090227
捐赠科研通 4818974
什么是DOI,文献DOI怎么找? 2578909
邀请新用户注册赠送积分活动 1533480
关于科研通互助平台的介绍 1492243