Efficient high-dimension feature selection based on enhanced equilibrium optimizer

计算机科学 特征选择 元启发式 初始化 模式识别(心理学) 排名(信息检索) 数据挖掘 特征(语言学) 人工智能 算法 语言学 哲学 程序设计语言
作者
Salima Ouadfel,Mohamed Abd Elaziz
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:187: 115882-115882 被引量:32
标识
DOI:10.1016/j.eswa.2021.115882
摘要

Feature selection (FS) is an important task in any classification process and aims to choose the smallest features number that yields higher classification accuracy. FS can be formulated as a combinatorial NP-hard problem for which robust metaheuristics are used as efficient wrapper-based FS approaches. However, when applied for high dimensional datasets that present large features number and few samples, the effectiveness of such wrapper-metaheuristics degraded, and their computation costs increased. To tackle this problem, we propose in this paper a hybrid FS approach based on the ReliefF filter method and a novel metaheuristic Equilibrium Optimizer (EO). The proposed method, called RBEO-LS, is composed of two phases. In the first phase, the ReliefF algorithm is used as a preprocessing step to assign weights for features, which estimate their relevance to the classification task. In the second phase, the binary EO (BEO) is used as a wrapper search approach. The features are ranked according to their weights and are used for the initialization of the BEO population. We embedded the BEO with a local search strategy to improve its performance by adding relevant features and removing redundant ones from the features subset guided by the features ranking and the Pearson coefficient correlation. The performance of the developed algorithm has been evaluated on sixteen UCI datasets and ten high dimensional biological datasets. The UCI datasets contain a high number of samples and a small or medium number of features. The biological datasets present a high number of features with few samples. The results demonstrate that the use of the ReliefF algorithm and the local search strategy improves the performance of the EO algorithm. The results also show the superiority of the RBEO-LS, among other state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
regina完成签到,获得积分10
1秒前
科研通AI2S应助数学情缘采纳,获得10
1秒前
科研通AI2S应助活泼身影采纳,获得10
1秒前
小甑发布了新的文献求助10
2秒前
kx完成签到,获得积分10
2秒前
1111完成签到,获得积分20
2秒前
eksue111发布了新的文献求助10
2秒前
swallow发布了新的文献求助10
2秒前
3秒前
斜玉发布了新的文献求助30
3秒前
3秒前
3秒前
yar应助科研通管家采纳,获得10
3秒前
Bio应助科研通管家采纳,获得40
3秒前
pcr163应助xq1699采纳,获得50
3秒前
桐桐应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
缓慢如南应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
iNk应助科研通管家采纳,获得20
4秒前
努力游游完成签到,获得积分10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
4秒前
缓慢如南应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
Happyness应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
ZEcholy完成签到 ,获得积分20
5秒前
5秒前
5秒前
6秒前
6秒前
111发布了新的文献求助30
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582