已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Efficient high-dimension feature selection based on enhanced equilibrium optimizer

计算机科学 特征选择 元启发式 初始化 模式识别(心理学) 排名(信息检索) 数据挖掘 特征(语言学) 人工智能 算法 语言学 哲学 程序设计语言
作者
Salima Ouadfel,Mohamed Abd Elaziz
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:187: 115882-115882 被引量:32
标识
DOI:10.1016/j.eswa.2021.115882
摘要

Feature selection (FS) is an important task in any classification process and aims to choose the smallest features number that yields higher classification accuracy. FS can be formulated as a combinatorial NP-hard problem for which robust metaheuristics are used as efficient wrapper-based FS approaches. However, when applied for high dimensional datasets that present large features number and few samples, the effectiveness of such wrapper-metaheuristics degraded, and their computation costs increased. To tackle this problem, we propose in this paper a hybrid FS approach based on the ReliefF filter method and a novel metaheuristic Equilibrium Optimizer (EO). The proposed method, called RBEO-LS, is composed of two phases. In the first phase, the ReliefF algorithm is used as a preprocessing step to assign weights for features, which estimate their relevance to the classification task. In the second phase, the binary EO (BEO) is used as a wrapper search approach. The features are ranked according to their weights and are used for the initialization of the BEO population. We embedded the BEO with a local search strategy to improve its performance by adding relevant features and removing redundant ones from the features subset guided by the features ranking and the Pearson coefficient correlation. The performance of the developed algorithm has been evaluated on sixteen UCI datasets and ten high dimensional biological datasets. The UCI datasets contain a high number of samples and a small or medium number of features. The biological datasets present a high number of features with few samples. The results demonstrate that the use of the ReliefF algorithm and the local search strategy improves the performance of the EO algorithm. The results also show the superiority of the RBEO-LS, among other state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助晴空万里采纳,获得10
1秒前
2秒前
wlf发布了新的文献求助30
2秒前
Wang完成签到 ,获得积分10
3秒前
Cooper应助干净巧荷采纳,获得10
5秒前
天天呼的海角完成签到,获得积分10
5秒前
6秒前
9秒前
9秒前
陈咪咪完成签到 ,获得积分10
10秒前
Orange应助cjlinhunu采纳,获得10
10秒前
JeromineJade发布了新的文献求助10
12秒前
酸海椒发布了新的文献求助10
13秒前
Lee发布了新的文献求助10
14秒前
14秒前
情怀应助JaneChen采纳,获得30
15秒前
潇洒的觅柔完成签到,获得积分10
16秒前
Mic应助舒服的水壶采纳,获得10
17秒前
嘻嘻发布了新的文献求助10
18秒前
18秒前
18秒前
微风完成签到 ,获得积分10
18秒前
19秒前
21秒前
ww417发布了新的文献求助10
22秒前
22秒前
22秒前
科研通AI6.1应助gndd采纳,获得30
23秒前
斯文败类应助诚心文博采纳,获得10
24秒前
皮代谷发布了新的文献求助10
24秒前
24秒前
25秒前
456244yyy发布了新的文献求助10
27秒前
大模型应助攀登采纳,获得30
27秒前
cjlinhunu发布了新的文献求助10
30秒前
NexusExplorer应助wsw111采纳,获得10
30秒前
30秒前
30秒前
JaneChen发布了新的文献求助30
31秒前
田様应助皮代谷采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771671
求助须知:如何正确求助?哪些是违规求助? 5593024
关于积分的说明 15428138
捐赠科研通 4904964
什么是DOI,文献DOI怎么找? 2639092
邀请新用户注册赠送积分活动 1586960
关于科研通互助平台的介绍 1541911