Efficient high-dimension feature selection based on enhanced equilibrium optimizer

计算机科学 特征选择 元启发式 初始化 模式识别(心理学) 排名(信息检索) 数据挖掘 特征(语言学) 人工智能 算法 语言学 哲学 程序设计语言
作者
Salima Ouadfel,Mohamed Abd Elaziz
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:187: 115882-115882 被引量:32
标识
DOI:10.1016/j.eswa.2021.115882
摘要

Feature selection (FS) is an important task in any classification process and aims to choose the smallest features number that yields higher classification accuracy. FS can be formulated as a combinatorial NP-hard problem for which robust metaheuristics are used as efficient wrapper-based FS approaches. However, when applied for high dimensional datasets that present large features number and few samples, the effectiveness of such wrapper-metaheuristics degraded, and their computation costs increased. To tackle this problem, we propose in this paper a hybrid FS approach based on the ReliefF filter method and a novel metaheuristic Equilibrium Optimizer (EO). The proposed method, called RBEO-LS, is composed of two phases. In the first phase, the ReliefF algorithm is used as a preprocessing step to assign weights for features, which estimate their relevance to the classification task. In the second phase, the binary EO (BEO) is used as a wrapper search approach. The features are ranked according to their weights and are used for the initialization of the BEO population. We embedded the BEO with a local search strategy to improve its performance by adding relevant features and removing redundant ones from the features subset guided by the features ranking and the Pearson coefficient correlation. The performance of the developed algorithm has been evaluated on sixteen UCI datasets and ten high dimensional biological datasets. The UCI datasets contain a high number of samples and a small or medium number of features. The biological datasets present a high number of features with few samples. The results demonstrate that the use of the ReliefF algorithm and the local search strategy improves the performance of the EO algorithm. The results also show the superiority of the RBEO-LS, among other state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
HeyU发布了新的文献求助10
1秒前
小倒霉蛋完成签到 ,获得积分10
1秒前
1秒前
1秒前
emilybei发布了新的文献求助10
2秒前
科研通AI6应助larychen采纳,获得10
2秒前
3秒前
畅快的寻凝完成签到,获得积分10
4秒前
lin发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
6秒前
领导范儿应助诚心黑夜采纳,获得10
7秒前
7秒前
TommyLeo关注了科研通微信公众号
8秒前
hh完成签到,获得积分10
8秒前
Sonny发布了新的文献求助10
8秒前
大哥爱发文章完成签到,获得积分10
9秒前
10秒前
可爱的函函应助larychen采纳,获得10
10秒前
依依发布了新的文献求助10
11秒前
11秒前
咩咩羊发布了新的文献求助10
11秒前
yuyan发布了新的文献求助10
11秒前
樂楽完成签到,获得积分20
12秒前
tree完成签到,获得积分10
12秒前
多宝鱼儿完成签到,获得积分20
13秒前
科研通AI6应助hhhhmmmm采纳,获得30
13秒前
dyyisash完成签到 ,获得积分10
13秒前
13秒前
Owen应助柯亦云采纳,获得10
14秒前
Lynn完成签到 ,获得积分10
14秒前
TAZIA完成签到,获得积分10
14秒前
求助人员发布了新的文献求助10
15秒前
光亮绮山完成签到 ,获得积分10
15秒前
wangxiaobin发布了新的文献求助10
16秒前
nn完成签到,获得积分10
16秒前
Akebi完成签到,获得积分10
17秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586355
求助须知:如何正确求助?哪些是违规求助? 4669622
关于积分的说明 14779253
捐赠科研通 4619608
什么是DOI,文献DOI怎么找? 2530838
邀请新用户注册赠送积分活动 1499668
关于科研通互助平台的介绍 1467830