亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient high-dimension feature selection based on enhanced equilibrium optimizer

计算机科学 特征选择 元启发式 初始化 模式识别(心理学) 排名(信息检索) 数据挖掘 特征(语言学) 人工智能 算法 语言学 哲学 程序设计语言
作者
Salima Ouadfel,Mohamed Abd Elaziz
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:187: 115882-115882 被引量:32
标识
DOI:10.1016/j.eswa.2021.115882
摘要

Feature selection (FS) is an important task in any classification process and aims to choose the smallest features number that yields higher classification accuracy. FS can be formulated as a combinatorial NP-hard problem for which robust metaheuristics are used as efficient wrapper-based FS approaches. However, when applied for high dimensional datasets that present large features number and few samples, the effectiveness of such wrapper-metaheuristics degraded, and their computation costs increased. To tackle this problem, we propose in this paper a hybrid FS approach based on the ReliefF filter method and a novel metaheuristic Equilibrium Optimizer (EO). The proposed method, called RBEO-LS, is composed of two phases. In the first phase, the ReliefF algorithm is used as a preprocessing step to assign weights for features, which estimate their relevance to the classification task. In the second phase, the binary EO (BEO) is used as a wrapper search approach. The features are ranked according to their weights and are used for the initialization of the BEO population. We embedded the BEO with a local search strategy to improve its performance by adding relevant features and removing redundant ones from the features subset guided by the features ranking and the Pearson coefficient correlation. The performance of the developed algorithm has been evaluated on sixteen UCI datasets and ten high dimensional biological datasets. The UCI datasets contain a high number of samples and a small or medium number of features. The biological datasets present a high number of features with few samples. The results demonstrate that the use of the ReliefF algorithm and the local search strategy improves the performance of the EO algorithm. The results also show the superiority of the RBEO-LS, among other state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
量子星尘发布了新的文献求助10
25秒前
淡淡的秋柳完成签到 ,获得积分10
32秒前
li完成签到,获得积分10
33秒前
Owen应助Michelle采纳,获得10
34秒前
GPTea举报陈HIAHIA求助涉嫌违规
1分钟前
GPTea举报fanzi求助涉嫌违规
1分钟前
敏静完成签到,获得积分10
1分钟前
1分钟前
2分钟前
yxuan发布了新的文献求助10
2分钟前
上官若男应助yxuan采纳,获得10
2分钟前
2分钟前
fanssw完成签到 ,获得积分0
2分钟前
Michelle发布了新的文献求助10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
领导范儿应助ARESCI采纳,获得10
3分钟前
哈哈哈完成签到,获得积分10
3分钟前
xLi完成签到,获得积分10
3分钟前
聪慧青曼完成签到 ,获得积分10
3分钟前
Jasper应助hkx采纳,获得10
4分钟前
4分钟前
4分钟前
SciGPT应助文静的曼彤采纳,获得10
4分钟前
hkx发布了新的文献求助10
4分钟前
研究XPD的小麻薯完成签到,获得积分10
4分钟前
4分钟前
kukudou2发布了新的文献求助10
4分钟前
kukudou2完成签到,获得积分20
5分钟前
hkx完成签到,获得积分10
5分钟前
含辰惜应助hkx采纳,获得10
5分钟前
5分钟前
王晨光完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
科研通AI6应助sun采纳,获得10
6分钟前
Vino完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952358
求助须知:如何正确求助?哪些是违规求助? 4215092
关于积分的说明 13111116
捐赠科研通 3996993
什么是DOI,文献DOI怎么找? 2187723
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115712