MR to ultrasound image registration with segmentation‐based learning for HDR prostate brachytherapy

人工智能 分割 计算机科学 轮廓 图像配准 计算机视觉 前列腺近距离放射治疗 深度学习 Sørensen–骰子系数 近距离放射治疗 图像分割 医学 放射科 图像(数学) 放射治疗 计算机图形学(图像)
作者
Yizheng Chen,Lei Xing,Lequan Yu,Wu Liu,B Fahimian,Thomas Niedermayr,H.P. Bagshaw,Mark K. Buyyounouski,Bin Han
出处
期刊:Medical Physics [Wiley]
卷期号:48 (6): 3074-3083 被引量:17
标识
DOI:10.1002/mp.14901
摘要

Purpose Propagation of contours from high‐quality magnetic resonance (MR) images to treatment planning ultrasound (US) images with severe needle artifacts is a challenging task, which can greatly aid the organ contouring in high dose rate (HDR) prostate brachytherapy. In this study, a deep learning approach was developed to automatize this registration procedure for HDR brachytherapy practice. Methods Because of the lack of training labels and difficulty of accurate registration from inferior image quality, a new segmentation‐based registration framework was proposed for this multi‐modality image registration problem. The framework consisted of two segmentation networks and a deformable registration network, based on the weakly ‐supervised registration strategy. Specifically, two 3D V‐Nets were trained for the prostate segmentation on the MR and US images separately, to generate the weak supervision labels for the registration network training. Besides the image pair, the corresponding prostate probability maps from the segmentation were further fed to the registration network to predict the deformation matrix, and an augmentation method was designed to randomly scale the input and label probability maps during the registration network training. The overlap between the deformed and fixed prostate contours was analyzed to evaluate the registration accuracy. Three datasets were collected from our institution for the MR and US image segmentation networks, and the registration network learning, which contained 121, 104, and 63 patient cases, respectively. Results The mean Dice similarity coefficient (DSC) results of the two prostate segmentation networks are 0.86 ± 0.05 and 0.90 ± 0.03, for MR images and the US images after the needle insertion, respectively. The mean DSC, center‐of‐mass (COM) distance, Hausdorff distance (HD), and averaged symmetric surface distance (ASSD) results for the registration of manual prostate contours were 0.87 ± 0.05, 1.70 ± 0.89 mm, 7.21 ± 2.07 mm, 1.61 ± 0.64 mm, respectively. By providing the prostate probability map from the segmentation to the registration network, as well as applying the random map augmentation method, the evaluation results of the four metrics were all improved, such as an increase in DSC from 0.83 ± 0.08 to 0.86 ± 0.06 and from 0.86 ± 0.06 to 0.87 ± 0.05, respectively. Conclusions A novel segmentation‐based registration framework was proposed to automatically register prostate MR images to the treatment planning US images with metal artifacts, which not only largely saved the labor work on the data preparation, but also improved the registration accuracy. The evaluation results showed the potential of this approach in HDR prostate brachytherapy practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666laotiezi完成签到,获得积分10
刚刚
WSDSG完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
2秒前
溪溪完成签到,获得积分20
3秒前
5秒前
溪溪发布了新的文献求助10
5秒前
meredith发布了新的文献求助10
8秒前
Sonny完成签到,获得积分20
11秒前
12秒前
NeoWu完成签到,获得积分10
13秒前
汉堡包应助科研小白采纳,获得10
17秒前
Lll完成签到,获得积分10
20秒前
香蕉觅云应助豪哥大大采纳,获得10
22秒前
22秒前
愤怒的之玉完成签到 ,获得积分10
24秒前
25秒前
alexlpb完成签到,获得积分10
27秒前
北阳完成签到,获得积分10
28秒前
Dingyiren完成签到,获得积分20
29秒前
meredith完成签到,获得积分10
31秒前
杜康完成签到,获得积分10
32秒前
33秒前
34秒前
35秒前
善学以致用应助jl采纳,获得10
35秒前
yqzhang完成签到,获得积分10
37秒前
火火火完成签到,获得积分10
38秒前
38秒前
Ar完成签到,获得积分10
39秒前
hesongwen发布了新的文献求助10
40秒前
科研小白发布了新的文献求助10
40秒前
吕蛋蛋完成签到,获得积分10
43秒前
涣醒发布了新的文献求助10
44秒前
科研通AI2S应助嘻嘻哈哈啊采纳,获得10
45秒前
稀罕你完成签到,获得积分10
45秒前
47秒前
hesongwen完成签到,获得积分10
49秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162968
求助须知:如何正确求助?哪些是违规求助? 2813989
关于积分的说明 7902647
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631546
版权声明 602187