MR to ultrasound image registration with segmentation‐based learning for HDR prostate brachytherapy

人工智能 分割 计算机科学 轮廓 图像配准 计算机视觉 前列腺近距离放射治疗 深度学习 Sørensen–骰子系数 近距离放射治疗 图像分割 医学 放射科 图像(数学) 放射治疗 计算机图形学(图像)
作者
Yizheng Chen,Lei Xing,Lequan Yu,Wu Liu,B Fahimian,Thomas Niedermayr,H.P. Bagshaw,Mark K. Buyyounouski,Bin Han
出处
期刊:Medical Physics [Wiley]
卷期号:48 (6): 3074-3083 被引量:21
标识
DOI:10.1002/mp.14901
摘要

Purpose Propagation of contours from high‐quality magnetic resonance (MR) images to treatment planning ultrasound (US) images with severe needle artifacts is a challenging task, which can greatly aid the organ contouring in high dose rate (HDR) prostate brachytherapy. In this study, a deep learning approach was developed to automatize this registration procedure for HDR brachytherapy practice. Methods Because of the lack of training labels and difficulty of accurate registration from inferior image quality, a new segmentation‐based registration framework was proposed for this multi‐modality image registration problem. The framework consisted of two segmentation networks and a deformable registration network, based on the weakly ‐supervised registration strategy. Specifically, two 3D V‐Nets were trained for the prostate segmentation on the MR and US images separately, to generate the weak supervision labels for the registration network training. Besides the image pair, the corresponding prostate probability maps from the segmentation were further fed to the registration network to predict the deformation matrix, and an augmentation method was designed to randomly scale the input and label probability maps during the registration network training. The overlap between the deformed and fixed prostate contours was analyzed to evaluate the registration accuracy. Three datasets were collected from our institution for the MR and US image segmentation networks, and the registration network learning, which contained 121, 104, and 63 patient cases, respectively. Results The mean Dice similarity coefficient (DSC) results of the two prostate segmentation networks are 0.86 ± 0.05 and 0.90 ± 0.03, for MR images and the US images after the needle insertion, respectively. The mean DSC, center‐of‐mass (COM) distance, Hausdorff distance (HD), and averaged symmetric surface distance (ASSD) results for the registration of manual prostate contours were 0.87 ± 0.05, 1.70 ± 0.89 mm, 7.21 ± 2.07 mm, 1.61 ± 0.64 mm, respectively. By providing the prostate probability map from the segmentation to the registration network, as well as applying the random map augmentation method, the evaluation results of the four metrics were all improved, such as an increase in DSC from 0.83 ± 0.08 to 0.86 ± 0.06 and from 0.86 ± 0.06 to 0.87 ± 0.05, respectively. Conclusions A novel segmentation‐based registration framework was proposed to automatically register prostate MR images to the treatment planning US images with metal artifacts, which not only largely saved the labor work on the data preparation, but also improved the registration accuracy. The evaluation results showed the potential of this approach in HDR prostate brachytherapy practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜美的芷完成签到,获得积分10
刚刚
3秒前
真谛发布了新的文献求助10
3秒前
勤恳的凌文应助kRAY采纳,获得10
3秒前
科研通AI5应助kRAY采纳,获得10
3秒前
细心的梦芝完成签到,获得积分10
3秒前
4秒前
嗯啊完成签到,获得积分10
4秒前
4秒前
爆米花应助thuuu采纳,获得10
4秒前
甜美的芷发布了新的文献求助10
4秒前
6秒前
细心青烟完成签到,获得积分20
6秒前
阴森女公爵完成签到 ,获得积分10
6秒前
7秒前
小鱼发布了新的文献求助10
8秒前
qxz完成签到,获得积分10
8秒前
Zcccjy发布了新的文献求助10
9秒前
wei完成签到,获得积分10
9秒前
科研通AI6应助123yaoyao采纳,获得10
9秒前
9秒前
我不困完成签到,获得积分10
10秒前
10秒前
细心青烟发布了新的文献求助10
10秒前
科研通AI6应助zsgot3采纳,获得10
11秒前
Marshall完成签到 ,获得积分10
11秒前
814791097完成签到,获得积分10
11秒前
苏苏完成签到,获得积分10
12秒前
布偶猫发布了新的文献求助10
13秒前
大模型应助守望者采纳,获得10
13秒前
13秒前
阿坤完成签到 ,获得积分10
13秒前
15秒前
kRAY完成签到,获得积分10
15秒前
共享精神应助科研通管家采纳,获得10
16秒前
圆锥香蕉应助科研通管家采纳,获得50
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
打打应助田野采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633192
求助须知:如何正确求助?哪些是违规求助? 4029241
关于积分的说明 12466657
捐赠科研通 3715470
什么是DOI,文献DOI怎么找? 2050148
邀请新用户注册赠送积分活动 1081735
科研通“疑难数据库(出版商)”最低求助积分说明 964033