亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MR to ultrasound image registration with segmentation‐based learning for HDR prostate brachytherapy

人工智能 分割 计算机科学 轮廓 图像配准 计算机视觉 前列腺近距离放射治疗 深度学习 Sørensen–骰子系数 近距离放射治疗 图像分割 医学 放射科 图像(数学) 放射治疗 计算机图形学(图像)
作者
Yizheng Chen,Lei Xing,Lequan Yu,Wu Liu,B Fahimian,Thomas Niedermayr,H.P. Bagshaw,Mark K. Buyyounouski,Bin Han
出处
期刊:Medical Physics [Wiley]
卷期号:48 (6): 3074-3083 被引量:26
标识
DOI:10.1002/mp.14901
摘要

Purpose Propagation of contours from high‐quality magnetic resonance (MR) images to treatment planning ultrasound (US) images with severe needle artifacts is a challenging task, which can greatly aid the organ contouring in high dose rate (HDR) prostate brachytherapy. In this study, a deep learning approach was developed to automatize this registration procedure for HDR brachytherapy practice. Methods Because of the lack of training labels and difficulty of accurate registration from inferior image quality, a new segmentation‐based registration framework was proposed for this multi‐modality image registration problem. The framework consisted of two segmentation networks and a deformable registration network, based on the weakly ‐supervised registration strategy. Specifically, two 3D V‐Nets were trained for the prostate segmentation on the MR and US images separately, to generate the weak supervision labels for the registration network training. Besides the image pair, the corresponding prostate probability maps from the segmentation were further fed to the registration network to predict the deformation matrix, and an augmentation method was designed to randomly scale the input and label probability maps during the registration network training. The overlap between the deformed and fixed prostate contours was analyzed to evaluate the registration accuracy. Three datasets were collected from our institution for the MR and US image segmentation networks, and the registration network learning, which contained 121, 104, and 63 patient cases, respectively. Results The mean Dice similarity coefficient (DSC) results of the two prostate segmentation networks are 0.86 ± 0.05 and 0.90 ± 0.03, for MR images and the US images after the needle insertion, respectively. The mean DSC, center‐of‐mass (COM) distance, Hausdorff distance (HD), and averaged symmetric surface distance (ASSD) results for the registration of manual prostate contours were 0.87 ± 0.05, 1.70 ± 0.89 mm, 7.21 ± 2.07 mm, 1.61 ± 0.64 mm, respectively. By providing the prostate probability map from the segmentation to the registration network, as well as applying the random map augmentation method, the evaluation results of the four metrics were all improved, such as an increase in DSC from 0.83 ± 0.08 to 0.86 ± 0.06 and from 0.86 ± 0.06 to 0.87 ± 0.05, respectively. Conclusions A novel segmentation‐based registration framework was proposed to automatically register prostate MR images to the treatment planning US images with metal artifacts, which not only largely saved the labor work on the data preparation, but also improved the registration accuracy. The evaluation results showed the potential of this approach in HDR prostate brachytherapy practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助Nowind采纳,获得10
15秒前
fabius0351完成签到 ,获得积分10
16秒前
hhhjkkk完成签到,获得积分10
17秒前
IceWater发布了新的文献求助10
54秒前
冷傲迎梅完成签到 ,获得积分10
56秒前
57秒前
IceWater完成签到,获得积分10
1分钟前
555发布了新的文献求助10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
喂我完成签到 ,获得积分10
2分钟前
2分钟前
rengar完成签到,获得积分10
2分钟前
123完成签到 ,获得积分10
2分钟前
星尘0314发布了新的文献求助80
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
科科完成签到 ,获得积分10
3分钟前
zzz发布了新的文献求助10
3分钟前
ferry发布了新的文献求助10
3分钟前
3分钟前
南寅完成签到,获得积分10
4分钟前
yzy发布了新的文献求助10
4分钟前
我是老大应助ferry采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
科研通AI6应助sevry采纳,获得10
4分钟前
Tina完成签到 ,获得积分10
4分钟前
大模型应助yzy采纳,获得10
4分钟前
GIA完成签到,获得积分10
4分钟前
ferry完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
shennie发布了新的文献求助10
4分钟前
传奇3应助碝磩采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459211
求助须知:如何正确求助?哪些是违规求助? 4564918
关于积分的说明 14297309
捐赠科研通 4490019
什么是DOI,文献DOI怎么找? 2459491
邀请新用户注册赠送积分活动 1449140
关于科研通互助平台的介绍 1424640