MR to ultrasound image registration with segmentation‐based learning for HDR prostate brachytherapy

人工智能 分割 计算机科学 轮廓 图像配准 计算机视觉 前列腺近距离放射治疗 深度学习 Sørensen–骰子系数 近距离放射治疗 图像分割 医学 放射科 图像(数学) 放射治疗 计算机图形学(图像)
作者
Yizheng Chen,Lei Xing,Lequan Yu,Wu Liu,B Fahimian,Thomas Niedermayr,H.P. Bagshaw,Mark K. Buyyounouski,Bin Han
出处
期刊:Medical Physics [Wiley]
卷期号:48 (6): 3074-3083 被引量:21
标识
DOI:10.1002/mp.14901
摘要

Purpose Propagation of contours from high‐quality magnetic resonance (MR) images to treatment planning ultrasound (US) images with severe needle artifacts is a challenging task, which can greatly aid the organ contouring in high dose rate (HDR) prostate brachytherapy. In this study, a deep learning approach was developed to automatize this registration procedure for HDR brachytherapy practice. Methods Because of the lack of training labels and difficulty of accurate registration from inferior image quality, a new segmentation‐based registration framework was proposed for this multi‐modality image registration problem. The framework consisted of two segmentation networks and a deformable registration network, based on the weakly ‐supervised registration strategy. Specifically, two 3D V‐Nets were trained for the prostate segmentation on the MR and US images separately, to generate the weak supervision labels for the registration network training. Besides the image pair, the corresponding prostate probability maps from the segmentation were further fed to the registration network to predict the deformation matrix, and an augmentation method was designed to randomly scale the input and label probability maps during the registration network training. The overlap between the deformed and fixed prostate contours was analyzed to evaluate the registration accuracy. Three datasets were collected from our institution for the MR and US image segmentation networks, and the registration network learning, which contained 121, 104, and 63 patient cases, respectively. Results The mean Dice similarity coefficient (DSC) results of the two prostate segmentation networks are 0.86 ± 0.05 and 0.90 ± 0.03, for MR images and the US images after the needle insertion, respectively. The mean DSC, center‐of‐mass (COM) distance, Hausdorff distance (HD), and averaged symmetric surface distance (ASSD) results for the registration of manual prostate contours were 0.87 ± 0.05, 1.70 ± 0.89 mm, 7.21 ± 2.07 mm, 1.61 ± 0.64 mm, respectively. By providing the prostate probability map from the segmentation to the registration network, as well as applying the random map augmentation method, the evaluation results of the four metrics were all improved, such as an increase in DSC from 0.83 ± 0.08 to 0.86 ± 0.06 and from 0.86 ± 0.06 to 0.87 ± 0.05, respectively. Conclusions A novel segmentation‐based registration framework was proposed to automatically register prostate MR images to the treatment planning US images with metal artifacts, which not only largely saved the labor work on the data preparation, but also improved the registration accuracy. The evaluation results showed the potential of this approach in HDR prostate brachytherapy practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zehua309完成签到,获得积分10
刚刚
长命百岁完成签到 ,获得积分10
刚刚
Echo发布了新的文献求助10
刚刚
Wind发布了新的文献求助10
刚刚
1秒前
1秒前
sb发布了新的文献求助10
1秒前
彭于晏应助SDP采纳,获得10
1秒前
美少叔叔完成签到 ,获得积分10
1秒前
Bear发布了新的文献求助10
2秒前
2秒前
曾雅麟发布了新的文献求助10
2秒前
NoMigraine完成签到,获得积分10
2秒前
慕青应助njzhangyanyang采纳,获得10
3秒前
3秒前
丹青完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
asdasdas发布了新的文献求助10
5秒前
6秒前
6秒前
爆米花应助活泼靖荷采纳,获得10
7秒前
萤火虫发布了新的文献求助10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
Mimi发布了新的文献求助10
8秒前
狂野的河马完成签到,获得积分10
8秒前
英姑应助YH采纳,获得10
8秒前
sb完成签到,获得积分10
8秒前
科研通AI2S应助yaohuang采纳,获得10
9秒前
勤奋的松鼠完成签到,获得积分10
9秒前
柠檬籽完成签到,获得积分10
9秒前
xxdn完成签到,获得积分10
9秒前
kermitds完成签到 ,获得积分10
9秒前
Yry发布了新的文献求助10
9秒前
10秒前
背后的鹭洋完成签到,获得积分10
10秒前
橙酒发布了新的文献求助10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016497
求助须知:如何正确求助?哪些是违规求助? 3556675
关于积分的说明 11322036
捐赠科研通 3289416
什么是DOI,文献DOI怎么找? 1812458
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812060