Curcumin is a kind of anti-cancer chemotherapeutic drug and has been demonstrated to be able to produce reactive oxygen species (ROS) under the stimuli of ultrasound (US). Herein, gadolinium-doped hollow mesoporous silica nanospheres (Gd-HMSNs) loaded with curcumin (Cur) and conjugated with carboxymethyl dextran (CMD) have been facilely fabricated and applied for magnetic resonance imaging (MRI)-guided synergistic cancer sonodynamic-chemotherapy. The as-prepared multifunctional theranostic nanoplatform (Cur@Gd-HMSNs-CMD) shows high drug loading capacity, satisfactory biocompatibility, pH-responsive degradation, and US-triggered drug release. Due to the release of Gd3+ ions or oligomers during degradation, the nanoplatform Cur@Gd-HMSNs-CMD could serve as an effective contrast agent for T1-weighted MRI to guide cancer treatment. More significantly, in vivo experiments show that the Cur@Gd-HMSNs-CMD can efficiently inhibit the tumor growth by a high inhibition rate of ~85.6% under US irradiation, mainly resulting from the synergistic effect of sonodynamic-chemotherapy. This innovative two-in-one theranostic nanoplatform using a single drug provides a new strategy for developing all-in-one nanomaterials for combined cancer treatment.