Communication-efficient federated learning

计算机科学 瓶颈 趋同(经济学) 服务器 传输(电信) 无线 边缘设备 机器学习 分布式计算 计算机网络 电信 嵌入式系统 经济增长 云计算 操作系统 经济
作者
Mingzhe Chen,Nir Shlezinger,H. Vincent Poor,Yonina C. Eldar,Shuguang Cui
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:118 (17) 被引量:92
标识
DOI:10.1073/pnas.2024789118
摘要

Federated learning (FL) enables edge devices, such as Internet of Things devices (e.g., sensors), servers, and institutions (e.g., hospitals), to collaboratively train a machine learning (ML) model without sharing their private data. FL requires devices to exchange their ML parameters iteratively, and thus the time it requires to jointly learn a reliable model depends not only on the number of training steps but also on the ML parameter transmission time per step. In practice, FL parameter transmissions are often carried out by a multitude of participating devices over resource-limited communication networks, for example, wireless networks with limited bandwidth and power. Therefore, the repeated FL parameter transmission from edge devices induces a notable delay, which can be larger than the ML model training time by orders of magnitude. Hence, communication delay constitutes a major bottleneck in FL. Here, a communication-efficient FL framework is proposed to jointly improve the FL convergence time and the training loss. In this framework, a probabilistic device selection scheme is designed such that the devices that can significantly improve the convergence speed and training loss have higher probabilities of being selected for ML model transmission. To further reduce the FL convergence time, a quantization method is proposed to reduce the volume of the model parameters exchanged among devices, and an efficient wireless resource allocation scheme is developed. Simulation results show that the proposed FL framework can improve the identification accuracy and convergence time by up to 3.6% and 87% compared to standard FL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不会失忆完成签到,获得积分10
刚刚
思源应助路边一颗小草采纳,获得10
刚刚
上官若男应助帅关采纳,获得10
1秒前
qin完成签到,获得积分10
2秒前
2秒前
流浪小诗人完成签到,获得积分10
2秒前
4秒前
知性的觅露完成签到,获得积分10
4秒前
朱湋帆完成签到 ,获得积分10
4秒前
devil发布了新的文献求助10
5秒前
乐乐应助咸鱼一号采纳,获得10
6秒前
8秒前
youjiang完成签到,获得积分10
8秒前
devil完成签到,获得积分10
8秒前
9秒前
9秒前
舞拽拽完成签到 ,获得积分10
11秒前
sunaijia完成签到,获得积分0
11秒前
雪白雍发布了新的文献求助10
11秒前
XiangXu完成签到,获得积分10
12秒前
guajiguaji发布了新的文献求助10
12秒前
12秒前
CipherSage应助liuq采纳,获得10
12秒前
优美的冰巧完成签到 ,获得积分10
13秒前
14秒前
14秒前
汤圆发布了新的文献求助50
14秒前
TT发布了新的文献求助10
15秒前
舒适的天奇完成签到 ,获得积分10
15秒前
YOLO完成签到 ,获得积分10
16秒前
刘奶奶的牛奶完成签到,获得积分10
17秒前
lio发布了新的文献求助10
19秒前
20秒前
20秒前
凝子老师发布了新的文献求助10
21秒前
白瓜完成签到 ,获得积分10
21秒前
123完成签到,获得积分10
23秒前
23秒前
斯文钢笔完成签到 ,获得积分10
24秒前
Hh发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849