Communication-efficient federated learning

计算机科学 瓶颈 趋同(经济学) 服务器 传输(电信) 无线 边缘设备 机器学习 分布式计算 计算机网络 电信 嵌入式系统 经济增长 云计算 操作系统 经济
作者
Mingzhe Chen,Nir Shlezinger,H. Vincent Poor,Yonina C. Eldar,Shuguang Cui
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:118 (17) 被引量:92
标识
DOI:10.1073/pnas.2024789118
摘要

Federated learning (FL) enables edge devices, such as Internet of Things devices (e.g., sensors), servers, and institutions (e.g., hospitals), to collaboratively train a machine learning (ML) model without sharing their private data. FL requires devices to exchange their ML parameters iteratively, and thus the time it requires to jointly learn a reliable model depends not only on the number of training steps but also on the ML parameter transmission time per step. In practice, FL parameter transmissions are often carried out by a multitude of participating devices over resource-limited communication networks, for example, wireless networks with limited bandwidth and power. Therefore, the repeated FL parameter transmission from edge devices induces a notable delay, which can be larger than the ML model training time by orders of magnitude. Hence, communication delay constitutes a major bottleneck in FL. Here, a communication-efficient FL framework is proposed to jointly improve the FL convergence time and the training loss. In this framework, a probabilistic device selection scheme is designed such that the devices that can significantly improve the convergence speed and training loss have higher probabilities of being selected for ML model transmission. To further reduce the FL convergence time, a quantization method is proposed to reduce the volume of the model parameters exchanged among devices, and an efficient wireless resource allocation scheme is developed. Simulation results show that the proposed FL framework can improve the identification accuracy and convergence time by up to 3.6% and 87% compared to standard FL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ScholarZmm完成签到,获得积分10
1秒前
sun完成签到,获得积分10
3秒前
moodys完成签到,获得积分10
5秒前
5秒前
rosalieshi完成签到,获得积分0
5秒前
!!!完成签到,获得积分10
7秒前
99giddens举报李剑鸿求助涉嫌违规
8秒前
9秒前
大鱼完成签到,获得积分10
10秒前
逃之姚姚完成签到 ,获得积分10
10秒前
Lorain完成签到,获得积分10
11秒前
欢呼的向秋完成签到,获得积分10
11秒前
12秒前
张张完成签到,获得积分20
12秒前
满栀关注了科研通微信公众号
13秒前
XXX发布了新的文献求助10
15秒前
张张发布了新的文献求助10
15秒前
科研通AI2S应助纯真的血茗采纳,获得10
17秒前
天天快乐应助hcy采纳,获得100
20秒前
zfc完成签到,获得积分10
20秒前
SYT完成签到,获得积分10
20秒前
iNk应助bo采纳,获得10
21秒前
隐形曼青应助Denghui采纳,获得10
23秒前
24秒前
27秒前
30秒前
32秒前
aikey发布了新的文献求助10
33秒前
天天完成签到 ,获得积分10
34秒前
Jingg完成签到,获得积分10
36秒前
俊逸的篮球完成签到,获得积分10
36秒前
大个应助科研通管家采纳,获得10
36秒前
小蘑菇应助科研通管家采纳,获得10
36秒前
充电宝应助科研通管家采纳,获得10
36秒前
子车茗应助科研通管家采纳,获得30
36秒前
37秒前
领导范儿应助科研通管家采纳,获得10
37秒前
小二郎应助科研通管家采纳,获得10
37秒前
SciGPT应助科研通管家采纳,获得10
37秒前
香蕉觅云应助科研通管家采纳,获得10
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312235
求助须知:如何正确求助?哪些是违规求助? 2944833
关于积分的说明 8521765
捐赠科研通 2620550
什么是DOI,文献DOI怎么找? 1432948
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650134