A transfer approach with attention reptile method and long-term generation mechanism for few-shot traffic prediction

计算机科学 学习迁移 初始化 人工智能 任务(项目管理) 依赖关系(UML) 机器学习 数据收集 期限(时间) 深度学习 空间分析 数据挖掘 地理 物理 程序设计语言 管理 经济 统计 遥感 量子力学 数学
作者
Tian Cheng,Xinning Zhu,Zheng Hu,Jian Ma
出处
期刊:Neurocomputing [Elsevier]
卷期号:452: 15-27 被引量:19
标识
DOI:10.1016/j.neucom.2021.03.068
摘要

Spatial–temporal prediction is a fundamental problem for intelligent transportation system (ITS), which is important for traffic management such as vehicle controls and travel plans. Deep learning has achieved success in spatial–temporal prediction with adequate data. However, many cities still suffer from data scarcity due to lack of essential infrastructure and services for data collection. Therefore, spatial–temporal prediction of cities with scarce data can be regarded as a few-shot learning problem. In this paper, we propose a novel transfer learning method to tackle spatial–temporal prediction tasks with only a small collection of data. Our proposed model aims to transfer the knowledge from multiple source cities to the target city by considering the different spatial–temporal distribution similarities between cities. Specifically, our model is designed as a spatial–temporal network based on a first-order meta-learning algorithm Reptile with an attention mechanism. Different from meta-learning algorithms that aim to learn a well-generalized initialization which can be adapted to any new task, our model achieves better performance on the specific target city by considering the different distribution similarities between multiple source cities and the target city. In addition, as it is difficult to learn the long-term spatial–temporal dependency with limited data in the target city, we propose a generation mechanism to learn and transfer long-term temporal features from source cities which have abundant long-period data to the target city. In the experiments, we compare our model with other state-of-the-art methods in real-world traffic prediction task. The experiments demonstrate the effectiveness of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cultromics发布了新的文献求助10
刚刚
1秒前
enoki完成签到,获得积分10
1秒前
lovekobe发布了新的文献求助10
1秒前
小蘑菇应助清新的向雪采纳,获得10
1秒前
等待的易梦完成签到,获得积分10
2秒前
科研小笨猪完成签到,获得积分10
2秒前
花火完成签到,获得积分10
2秒前
tyZhang完成签到,获得积分10
3秒前
Owen应助chHe采纳,获得10
3秒前
Xiaoxin_Ju完成签到,获得积分10
3秒前
3秒前
3秒前
叶帅发布了新的文献求助10
4秒前
4秒前
ding应助麦田稻草人采纳,获得10
4秒前
slzhao发布了新的文献求助10
5秒前
慕青应助火星上的听云采纳,获得10
5秒前
郁金香发布了新的文献求助10
6秒前
小赵发布了新的文献求助10
7秒前
zyy完成签到,获得积分10
7秒前
羞涩的小小完成签到 ,获得积分10
7秒前
烟花应助努力独行者采纳,获得20
7秒前
8秒前
luoluo完成签到,获得积分20
8秒前
丫头发布了新的文献求助10
8秒前
feng_qi001发布了新的文献求助100
8秒前
特斯小子完成签到 ,获得积分10
8秒前
dongfang完成签到,获得积分20
8秒前
火山蜗牛完成签到,获得积分10
9秒前
天天快乐应助wendydqw采纳,获得10
9秒前
orangelion完成签到,获得积分10
9秒前
fang发布了新的文献求助10
9秒前
10秒前
绿野仙踪完成签到,获得积分10
10秒前
11秒前
11秒前
汉堡包应助怡然的白开水采纳,获得10
11秒前
12秒前
黄晓杰2024完成签到 ,获得积分10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155255
求助须知:如何正确求助?哪些是违规求助? 2806077
关于积分的说明 7867955
捐赠科研通 2464459
什么是DOI,文献DOI怎么找? 1311849
科研通“疑难数据库(出版商)”最低求助积分说明 629777
版权声明 601862