U-Sleep: resilient high-frequency sleep staging

多导睡眠图 睡眠(系统调用) 睡眠阶段 安眠药 慢波睡眠 脑电图 工作流程 卷积神经网络 睡眠研究 深度学习 医学 人工智能 计算机科学 睡眠障碍 失眠症 精神科 操作系统 数据库
作者
Mathias Perslev,Sune Darkner,Lykke Kempfner,Miki Nikolic,Poul Jennum,Christian Igel
出处
期刊:npj digital medicine [Springer Nature]
卷期号:4 (1) 被引量:130
标识
DOI:10.1038/s41746-021-00440-5
摘要

Sleep disorders affect a large portion of the global population and are strong predictors of morbidity and all-cause mortality. Sleep staging segments a period of sleep into a sequence of phases providing the basis for most clinical decisions in sleep medicine. Manual sleep staging is difficult and time-consuming as experts must evaluate hours of polysomnography (PSG) recordings with electroencephalography (EEG) and electrooculography (EOG) data for each patient. Here, we present U-Sleep, a publicly available, ready-to-use deep-learning-based system for automated sleep staging ( sleep.ai.ku.dk ). U-Sleep is a fully convolutional neural network, which was trained and evaluated on PSG recordings from 15,660 participants of 16 clinical studies. It provides accurate segmentations across a wide range of patient cohorts and PSG protocols not considered when building the system. U-Sleep works for arbitrary combinations of typical EEG and EOG channels, and its special deep learning architecture can label sleep stages at shorter intervals than the typical 30 s periods used during training. We show that these labels can provide additional diagnostic information and lead to new ways of analyzing sleep. U-Sleep performs on par with state-of-the-art automatic sleep staging systems on multiple clinical datasets, even if the other systems were built specifically for the particular data. A comparison with consensus-scores from a previously unseen clinic shows that U-Sleep performs as accurately as the best of the human experts. U-Sleep can support the sleep staging workflow of medical experts, which decreases healthcare costs, and can provide highly accurate segmentations when human expertize is lacking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动的嚓茶完成签到,获得积分10
刚刚
1秒前
风衣拖地完成签到 ,获得积分10
2秒前
yueyao发布了新的文献求助10
2秒前
3秒前
quanjiazhi发布了新的文献求助10
3秒前
wanci发布了新的文献求助10
4秒前
双龙戏珠啊完成签到,获得积分10
4秒前
彭于彦祖应助酷酷李可爱婕采纳,获得100
5秒前
橙子味的邱憨憨完成签到 ,获得积分10
5秒前
小西完成签到,获得积分10
5秒前
5秒前
小瓷完成签到,获得积分10
6秒前
6秒前
Ll发布了新的文献求助10
7秒前
orixero应助ZXH采纳,获得10
10秒前
ab发布了新的文献求助10
10秒前
11秒前
12秒前
顾矜应助Crazy_Runner采纳,获得10
12秒前
cocolu应助liuk采纳,获得10
13秒前
13秒前
NexusExplorer应助sy采纳,获得10
15秒前
15秒前
研友_nVqwxL发布了新的文献求助10
17秒前
czwu完成签到,获得积分10
18秒前
18秒前
18秒前
fly完成签到 ,获得积分10
18秒前
19秒前
19秒前
20秒前
笑破果果完成签到 ,获得积分10
20秒前
20秒前
20秒前
Yael发布了新的文献求助10
20秒前
ab完成签到,获得积分10
20秒前
sada发布了新的文献求助10
21秒前
啦啦啦啦发布了新的文献求助30
21秒前
田田发布了新的文献求助10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299776
求助须知:如何正确求助?哪些是违规求助? 2934644
关于积分的说明 8470036
捐赠科研通 2608208
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574