Readmission Prediction for Patients with Ischemic Stroke after Discharge

人口统计学的 医学 缺血性中风 临床决策支持系统 接收机工作特性 医疗保健 冲程(发动机) 急诊医学 支持向量机 出院 诊断代码 回顾性队列研究 医院再入院 决策支持系统 内科学 计算机科学 机器学习 人工智能 人口学 机械工程 人口 环境卫生 缺血 社会学 工程类 经济 经济增长
作者
Chi-Hsun Lien,Fu-Hsing Wu,Po‐Chou Chan,Chien-Ming Tseng,Hsuan‐Hung Lin,Yung-Fu Chen
出处
期刊:International Symposium on Computer, Consumer and Control 卷期号:1: 45-48 被引量:1
标识
DOI:10.1109/is3c50286.2020.00019
摘要

The rate of patient readmissions within a short period after discharge is a significant indicator for the healthcare quality of a hospital. Readmissions may result in an increased cost of a healthcare organization. Design of a model for predicting readmission would benefit on solving the above issues. This study aims to develop a clinical decision support system (CDSS) for predicting readmission of the patient with ischemic stroke (IS) after discharge. The IGS method, which integrates genetic algorithm (GA) and support vector machine (SVM), accompanied with three objective functions, was adopted to develop the CDSS. The data, retrieved from the National Health Insurance Research Database (NHIRD), including 4351 patients (462 with readmission and 3889 without readmission) diagnosed with IS (ICD-9-CM Code 433–435), aged 20 years old and older, treated within 30 days of hospital admission and then discharged to outpatient treatment between Jan. 2007 and Dec. 2009, were used for designing the predictive models. The statistical analysis of demographics (gender and age) and other candidate variables (28) between patients with and without readmission is presented. Twelve of these 30 variables are significantly different (p < 0.05). CDSS models designed using three objective functions achieved predictive performances of accuracy, sensitivity, specificity, and area under ROC curve (AUC) equaling 65.9-66.77%, 58.22-66.66%, 66.88-73.59%, and 0.6773-0.7183, respectively. Future work will focus on improving the predictive performance by including more effective risk factors and comorbidities, as well as integrating GA with more effective AI methods such as deep neural network to increase the predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
巴斯光年完成签到,获得积分20
刚刚
刚刚
DBY发布了新的文献求助10
2秒前
麦旋风发布了新的文献求助10
3秒前
Chunyan_Yu发布了新的文献求助10
3秒前
3秒前
枭源完成签到,获得积分10
3秒前
深情安青应助和谐的芷天采纳,获得10
4秒前
4秒前
liyizhe发布了新的文献求助30
4秒前
taowang14完成签到,获得积分10
5秒前
5秒前
CipherSage应助朴素的问枫采纳,获得10
6秒前
田様应助忐忑的怜烟采纳,获得10
6秒前
8秒前
旅行者发布了新的文献求助10
9秒前
Ava应助北辰采纳,获得10
9秒前
慕山完成签到,获得积分10
9秒前
wanci应助q792309106采纳,获得10
10秒前
10秒前
简单成危发布了新的文献求助10
10秒前
啦啦完成签到 ,获得积分10
10秒前
glimmen完成签到,获得积分10
12秒前
liyizhe完成签到,获得积分10
14秒前
zzz发布了新的文献求助10
14秒前
14秒前
七栀发布了新的文献求助10
14秒前
深情安青应助Zz采纳,获得30
14秒前
14秒前
猪猪hero应助欣喜靖采纳,获得10
16秒前
安静的缘分发布了新的文献求助200
16秒前
17秒前
w_完成签到,获得积分10
17秒前
拓跋涵易发布了新的文献求助10
17秒前
18秒前
由由关注了科研通微信公众号
18秒前
19秒前
Zeno完成签到 ,获得积分10
20秒前
天天快乐应助科研通管家采纳,获得10
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144