Readmission Prediction for Patients with Ischemic Stroke after Discharge

人口统计学的 医学 缺血性中风 临床决策支持系统 接收机工作特性 医疗保健 冲程(发动机) 急诊医学 支持向量机 出院 诊断代码 回顾性队列研究 医院再入院 决策支持系统 内科学 计算机科学 机器学习 人工智能 人口学 机械工程 人口 环境卫生 缺血 社会学 工程类 经济 经济增长
作者
Chi-Hsun Lien,Fu-Hsing Wu,Po‐Chou Chan,Chien-Ming Tseng,Hsuan‐Hung Lin,Yung-Fu Chen
出处
期刊:International Symposium on Computer, Consumer and Control 卷期号:1: 45-48 被引量:1
标识
DOI:10.1109/is3c50286.2020.00019
摘要

The rate of patient readmissions within a short period after discharge is a significant indicator for the healthcare quality of a hospital. Readmissions may result in an increased cost of a healthcare organization. Design of a model for predicting readmission would benefit on solving the above issues. This study aims to develop a clinical decision support system (CDSS) for predicting readmission of the patient with ischemic stroke (IS) after discharge. The IGS method, which integrates genetic algorithm (GA) and support vector machine (SVM), accompanied with three objective functions, was adopted to develop the CDSS. The data, retrieved from the National Health Insurance Research Database (NHIRD), including 4351 patients (462 with readmission and 3889 without readmission) diagnosed with IS (ICD-9-CM Code 433–435), aged 20 years old and older, treated within 30 days of hospital admission and then discharged to outpatient treatment between Jan. 2007 and Dec. 2009, were used for designing the predictive models. The statistical analysis of demographics (gender and age) and other candidate variables (28) between patients with and without readmission is presented. Twelve of these 30 variables are significantly different (p < 0.05). CDSS models designed using three objective functions achieved predictive performances of accuracy, sensitivity, specificity, and area under ROC curve (AUC) equaling 65.9-66.77%, 58.22-66.66%, 66.88-73.59%, and 0.6773-0.7183, respectively. Future work will focus on improving the predictive performance by including more effective risk factors and comorbidities, as well as integrating GA with more effective AI methods such as deep neural network to increase the predictive performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英姑应助三只兔子采纳,获得10
1秒前
ash发布了新的文献求助10
1秒前
1秒前
古风发布了新的文献求助10
1秒前
2秒前
幽默书瑶发布了新的文献求助10
4秒前
大个应助xiaodu采纳,获得10
6秒前
123发布了新的文献求助10
6秒前
zdd完成签到,获得积分10
6秒前
自洽发布了新的文献求助10
7秒前
power完成签到,获得积分10
7秒前
亗sui完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
赘婿应助侠侠大王采纳,获得10
10秒前
12秒前
12秒前
舒服的寒松完成签到 ,获得积分10
12秒前
大方的乌冬面完成签到 ,获得积分10
13秒前
伶俐黄豆应助xiaobai123456采纳,获得10
14秒前
Inevitable发布了新的文献求助10
14秒前
调皮的笑阳完成签到 ,获得积分10
14秒前
15秒前
19秒前
脑洞疼应助hh采纳,获得10
19秒前
由凡发布了新的文献求助10
20秒前
20秒前
Mic应助ash采纳,获得10
21秒前
CorrectSTH完成签到,获得积分10
23秒前
Owen应助xiao采纳,获得10
25秒前
25秒前
zoushiyi完成签到 ,获得积分10
28秒前
Inevitable完成签到,获得积分10
29秒前
29秒前
禾风完成签到,获得积分10
29秒前
地形图完成签到 ,获得积分10
33秒前
34秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5842960
求助须知:如何正确求助?哪些是违规求助? 6177670
关于积分的说明 15610714
捐赠科研通 4960102
什么是DOI,文献DOI怎么找? 2674103
邀请新用户注册赠送积分活动 1618937
关于科研通互助平台的介绍 1574172