Concurrent realization of dendrite-free anode and high-loading cathode via 3D printed N-Ti3C2 MXene framework toward advanced Li–S full batteries

材料科学 阳极 阴极 多孔性 多硫化物 电化学 电极 枝晶(数学) 纳米技术 电解质 化学工程 复合材料 电气工程 化学 数学 工程类 物理化学 几何学
作者
Chaohui Wei,Zhaodi Fan,Lianghao Yu,Yingze Song,Xianzhong Yang,Zixiong Shi,Menglei Wang,Ruizhi Yang,Jingyu Sun
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:41: 141-151 被引量:121
标识
DOI:10.1016/j.ensm.2021.05.030
摘要

The practical implementation of Li–S battery has been equally hampered by uncontrollable dendritic growth at the anode and inferior high-loading performance at the cathode. It is therefore desirable to explore multifunctional host candidate coupled with advanced fabrication technique to concurrently modulate both electrodes. Herein, we propose a versatile 3D printed (3DP) framework comprising nitrogen-doped porous Ti3C2 MXene (N-pTi3C2Tx) that is competent in regulating dual electrodes of Li–S batteries. Such a 3DP scaffold possesses hierarchical porosity, high conductivity, as well as ample nitrogen sites to synergize lithiophilic-sulfiphilic feature. Serving as a dendrite inhibitor, 3DP N-pTi3C2Tx interlayer could dissipate the local current and homogenize Li deposition, accordingly rendering a dendrite-free anode to maintain an ultralong lifespan up to 800 h at 5.0 mA cm–2/5.0 mAh cm–2. Meanwhile, the 3DP N-pTi3C2Tx host enables suppressed polysulfide shuttle and accelerated sulfur electrochemistry especially under elevated sulfur loadings. Thus-printed Li–S full cells (3DP N-pTi3C2Tx/S||3DP N-pTi3C2Tx@Li) can continuously operate over 250 cycles at a sulfur loading of 7.56 mg cm–2, accompanied by a capacity decay of 0.06% per cycle. More impressively, an ultimate capacity of 8.47 mAh cm–2 is harvested after 60 cycles at 12.02 mg cm–2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
e麓绝尘完成签到 ,获得积分10
1秒前
2秒前
2秒前
冉苒完成签到,获得积分10
2秒前
虚幻故事完成签到 ,获得积分10
2秒前
叁拾肆完成签到 ,获得积分10
3秒前
子暮发布了新的文献求助20
4秒前
5秒前
5秒前
好运6连发布了新的文献求助10
6秒前
JamesPei应助emmm采纳,获得10
7秒前
Jasper应助喜悦一德采纳,获得10
7秒前
zcy完成签到,获得积分10
7秒前
zyy发布了新的文献求助10
7秒前
7秒前
研友_LMyj0L发布了新的文献求助10
7秒前
7秒前
杨一乐发布了新的文献求助10
8秒前
小花完成签到,获得积分10
8秒前
宋佳发布了新的文献求助10
8秒前
完美世界应助111采纳,获得10
9秒前
10秒前
雨后彩虹伤完成签到,获得积分10
10秒前
popkeke完成签到,获得积分10
11秒前
amberzyc应助仁爱的念文采纳,获得10
11秒前
欧克完成签到 ,获得积分10
12秒前
花根发布了新的文献求助10
12秒前
12秒前
小木完成签到,获得积分10
12秒前
勤恳风华完成签到,获得积分10
12秒前
承乐发布了新的文献求助10
12秒前
兜兜完成签到,获得积分10
13秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
老实从蕾完成签到 ,获得积分10
15秒前
15秒前
16秒前
二三三发布了新的文献求助10
16秒前
好名字发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809