Superelastic, Antifreezing, Antidrying, and Conductive Organohydrogels for Wearable Strain Sensors

材料科学 乙二醇 自愈水凝胶 复合材料 防冻剂 化学工程 动态力学分析 腰果酚 高分子化学 聚合物 有机化学 工程类 环氧树脂 化学
作者
Qinglin Li,Jiawen Chen,Yuxia Zhang,Chongyi Chi,Guofa Dong,Jianrong Lin,Qinhui Chen
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (43): 51546-51555 被引量:38
标识
DOI:10.1021/acsami.1c16368
摘要

Sensors based on conductive hydrogels have received extensive attention in various fields, such as artificial intelligence, electronic skin, and health monitoring. However, the poor resilience and fatigue resistance, icing, and water loss of traditional hydrogels greatly limit their application. Herein, an ionic conductive organohydrogel (PAC-Zn) was prepared for the first time by copolymerization of cardanol and acrylic acid in water/1,3-butanediol as a binary solvent system. A very small amount of cardanol (1% cardanol of total monomers) could not only significantly improve the tensile strength (∼4 times) and toughness (∼3 times) of PAA but also improve its extensibility. Due to the presence of 1,3-butanediol, PAC-Zn showed outstanding tolerance for freezing (-45 °C) and drying (over 85% moisture retention after 15 days of storage in a 37 °C oven). Compared with ethylene glycol and glycerol as antifreeze agents used in organohydrogels, the addition of 1,3-butanediol endowed the organohydrogel with not only similar frost resistance but also better mechanical performance. Besides, PAC-Zn exhibited fast resilience (almost no hysteresis loop) and excellent antifatigue ability. More importantly, a PAC-Zn organohydrogel-based sensor could detect human motion in real time (wrist, elbow, finger, and knee joints), revealing its fast response, good sensitivity, and stable electromechanical repeatability. In conclusion, the multifunctional PAC-Zn organohydrogel is expected to become a potential and promising candidate in the field of strain sensors under a broad range of environmental temperatures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵的友儿完成签到,获得积分10
1秒前
苏碧萱发布了新的文献求助10
2秒前
3秒前
清弦发布了新的文献求助10
3秒前
yeyu123发布了新的文献求助10
4秒前
4秒前
4秒前
宣仰完成签到,获得积分20
6秒前
曲线完成签到,获得积分10
7秒前
科研通AI5应助maxspecter采纳,获得10
7秒前
7秒前
林兰特完成签到,获得积分10
9秒前
tangtang发布了新的文献求助10
9秒前
Puddingo完成签到,获得积分10
9秒前
乐乱完成签到 ,获得积分10
10秒前
11秒前
xiaodian完成签到,获得积分10
11秒前
11秒前
suyou完成签到 ,获得积分10
12秒前
12秒前
虚心的依瑶完成签到,获得积分10
13秒前
迟大猫应助潇洒的青易采纳,获得10
13秒前
Gaojin锦完成签到,获得积分10
13秒前
薛变霞完成签到 ,获得积分10
14秒前
阿辉发布了新的文献求助10
14秒前
qazpsy发布了新的文献求助10
16秒前
科研通AI5应助liwu采纳,获得10
17秒前
上官若男应助罗山柳采纳,获得10
17秒前
17秒前
18秒前
青仔仔完成签到,获得积分10
18秒前
追寻的广缘完成签到,获得积分20
19秒前
小饼饼完成签到,获得积分10
19秒前
Agernon应助连夏之采纳,获得10
20秒前
英俊的铭应助aran采纳,获得10
20秒前
虎咪咪发布了新的文献求助10
22秒前
wanci应助sci_zt采纳,获得10
23秒前
小安发布了新的文献求助10
23秒前
23秒前
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546412
求助须知:如何正确求助?哪些是违规求助? 3123558
关于积分的说明 9355739
捐赠科研通 2822124
什么是DOI,文献DOI怎么找? 1551271
邀请新用户注册赠送积分活动 723287
科研通“疑难数据库(出版商)”最低求助积分说明 713690