An improved complex multi-task Bayesian compressive sensing approach for compression and reconstruction of SHM data

压缩传感 结构健康监测 计算机科学 算法 任务(项目管理) 采样(信号处理) 傅里叶变换 数据挖掘 工程类 数学 滤波器(信号处理) 结构工程 计算机视觉 数学分析 系统工程
作者
Hua‐Ping Wan,Guan-Sen Dong,Yaozhi Luo,Yi‐Qing Ni
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:167: 108531-108531 被引量:19
标识
DOI:10.1016/j.ymssp.2021.108531
摘要

The long-term structural health monitoring (SHM) provides massive data, leading to a high demand for data transmission and storage. Compressive sensing (CS) has great potential in alleviating this problem by using less samples to recover the complete signals utilizing the sparsity. Vibration data collected by an SHM system is usually sparse in the frequency domain, and the peaks in their Fourier spectra most often correspond to the same frequencies. This underlying commonality among the signals can be utilized by multi-task learning technique to improve the computational efficiency and accuracy. While being real-valued originally, the data after discrete Fourier transformation are in general complex-valued. In this paper, an improved complex multi-task Bayesian CS (CMT-BCS) method is developed for compression and reconstruction of SHM data requiring a high sampling rate. The novelty of the proposed method is twofold: (i) it overcomes the invalidity of the conventional CMT-BCS approach in dealing with the ‘incomplete’ CS problem, and (ii) it improves the computational efficiency of conventional CMT-BCS approach. The former is achieved by restructuring the CMT-BCS formulation, and the latter is realized by sharing a common sampling matrix across all tasks of concern. The improved CMT-BCS is evaluated using the shaking table test data of a scale-down frame model and the real-world SHM data acquired from a supertall building. A comparison with several existing BCS methods that enable to deal with complex values is also provided to demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助专注凝蝶采纳,获得30
1秒前
1秒前
123发布了新的文献求助10
2秒前
杨杨发布了新的文献求助10
3秒前
Ava发布了新的文献求助10
4秒前
4秒前
研友_Ze00Vn发布了新的文献求助10
5秒前
5秒前
复杂听筠完成签到,获得积分20
6秒前
璇儿阿完成签到,获得积分10
7秒前
称心璎完成签到,获得积分20
8秒前
Trista发布了新的文献求助10
8秒前
薰硝壤应助海野海月采纳,获得10
8秒前
8秒前
10秒前
orange9发布了新的文献求助10
10秒前
11秒前
张小愚完成签到,获得积分10
11秒前
熊猫盖浇饭完成签到,获得积分10
14秒前
15秒前
浅尝离白举报烦烦烦求助涉嫌违规
15秒前
Hima发布了新的文献求助10
16秒前
张小愚发布了新的文献求助10
16秒前
zyx发布了新的文献求助10
16秒前
古道作家完成签到,获得积分10
16秒前
魏惜珊发布了新的文献求助200
17秒前
zzz给zzz的求助进行了留言
19秒前
魁梧的忆山完成签到,获得积分10
20秒前
22秒前
秋半梦应助科研通管家采纳,获得10
22秒前
22秒前
waoller1完成签到,获得积分10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
852应助科研通管家采纳,获得10
23秒前
wanci应助科研通管家采纳,获得10
23秒前
元谷雪应助科研通管家采纳,获得10
23秒前
bkagyin应助科研通管家采纳,获得10
23秒前
领导范儿应助科研通管家采纳,获得10
23秒前
午见千山应助科研通管家采纳,获得10
23秒前
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145145
求助须知:如何正确求助?哪些是违规求助? 2796529
关于积分的说明 7820187
捐赠科研通 2452829
什么是DOI,文献DOI怎么找? 1305278
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449