An improved complex multi-task Bayesian compressive sensing approach for compression and reconstruction of SHM data

压缩传感 结构健康监测 计算机科学 算法 任务(项目管理) 采样(信号处理) 傅里叶变换 数据挖掘 工程类 数学 滤波器(信号处理) 结构工程 计算机视觉 数学分析 系统工程
作者
Hua‐Ping Wan,Guan-Sen Dong,Yaozhi Luo,Yi‐Qing Ni
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:167: 108531-108531 被引量:19
标识
DOI:10.1016/j.ymssp.2021.108531
摘要

The long-term structural health monitoring (SHM) provides massive data, leading to a high demand for data transmission and storage. Compressive sensing (CS) has great potential in alleviating this problem by using less samples to recover the complete signals utilizing the sparsity. Vibration data collected by an SHM system is usually sparse in the frequency domain, and the peaks in their Fourier spectra most often correspond to the same frequencies. This underlying commonality among the signals can be utilized by multi-task learning technique to improve the computational efficiency and accuracy. While being real-valued originally, the data after discrete Fourier transformation are in general complex-valued. In this paper, an improved complex multi-task Bayesian CS (CMT-BCS) method is developed for compression and reconstruction of SHM data requiring a high sampling rate. The novelty of the proposed method is twofold: (i) it overcomes the invalidity of the conventional CMT-BCS approach in dealing with the ‘incomplete’ CS problem, and (ii) it improves the computational efficiency of conventional CMT-BCS approach. The former is achieved by restructuring the CMT-BCS formulation, and the latter is realized by sharing a common sampling matrix across all tasks of concern. The improved CMT-BCS is evaluated using the shaking table test data of a scale-down frame model and the real-world SHM data acquired from a supertall building. A comparison with several existing BCS methods that enable to deal with complex values is also provided to demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赵世璧发布了新的文献求助10
1秒前
小鲨鱼完成签到,获得积分10
2秒前
2秒前
核桃应助王晓林采纳,获得20
4秒前
Lucas应助美好的黎云采纳,获得10
4秒前
obsidian完成签到,获得积分10
4秒前
zhou完成签到,获得积分20
4秒前
大好人顶顶顶顶完成签到,获得积分10
5秒前
qq发布了新的文献求助10
6秒前
科研通AI5应助I北草蜥采纳,获得10
6秒前
ping完成签到,获得积分10
6秒前
6秒前
科研通AI6应助乐观采纳,获得30
6秒前
7秒前
JokerSun完成签到,获得积分10
8秒前
lazy完成签到,获得积分10
8秒前
8秒前
景承完成签到 ,获得积分10
9秒前
dlm12138发布了新的文献求助10
10秒前
zjw完成签到,获得积分10
10秒前
完美世界应助马明芳采纳,获得10
11秒前
azuresky应助heyl采纳,获得30
12秒前
12秒前
香蕉觅云应助斯文明杰采纳,获得10
12秒前
13秒前
Cala洛~完成签到 ,获得积分10
13秒前
萌萌哒瓢酱完成签到,获得积分10
13秒前
Fury完成签到 ,获得积分10
16秒前
xiaoqi完成签到,获得积分10
16秒前
zfamjoy完成签到,获得积分10
16秒前
青阳完成签到,获得积分10
16秒前
liujiayi关注了科研通微信公众号
16秒前
Meyako应助新一袁采纳,获得10
16秒前
樱桃小贩完成签到,获得积分0
17秒前
Zll完成签到,获得积分10
17秒前
乐乐应助热爱科研的小孩采纳,获得10
17秒前
qqqqqqy发布了新的文献求助10
18秒前
芋圆完成签到,获得积分10
18秒前
漂南仰完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633382
求助须知:如何正确求助?哪些是违规求助? 4029342
关于积分的说明 12467045
捐赠科研通 3715550
什么是DOI,文献DOI怎么找? 2050235
邀请新用户注册赠送积分活动 1081814
科研通“疑难数据库(出版商)”最低求助积分说明 964080