An improved complex multi-task Bayesian compressive sensing approach for compression and reconstruction of SHM data

压缩传感 结构健康监测 计算机科学 算法 任务(项目管理) 采样(信号处理) 傅里叶变换 数据挖掘 工程类 数学 滤波器(信号处理) 结构工程 计算机视觉 数学分析 系统工程
作者
Hua‐Ping Wan,Guan-Sen Dong,Yaozhi Luo,Yi‐Qing Ni
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:167: 108531-108531 被引量:19
标识
DOI:10.1016/j.ymssp.2021.108531
摘要

The long-term structural health monitoring (SHM) provides massive data, leading to a high demand for data transmission and storage. Compressive sensing (CS) has great potential in alleviating this problem by using less samples to recover the complete signals utilizing the sparsity. Vibration data collected by an SHM system is usually sparse in the frequency domain, and the peaks in their Fourier spectra most often correspond to the same frequencies. This underlying commonality among the signals can be utilized by multi-task learning technique to improve the computational efficiency and accuracy. While being real-valued originally, the data after discrete Fourier transformation are in general complex-valued. In this paper, an improved complex multi-task Bayesian CS (CMT-BCS) method is developed for compression and reconstruction of SHM data requiring a high sampling rate. The novelty of the proposed method is twofold: (i) it overcomes the invalidity of the conventional CMT-BCS approach in dealing with the ‘incomplete’ CS problem, and (ii) it improves the computational efficiency of conventional CMT-BCS approach. The former is achieved by restructuring the CMT-BCS formulation, and the latter is realized by sharing a common sampling matrix across all tasks of concern. The improved CMT-BCS is evaluated using the shaking table test data of a scale-down frame model and the real-world SHM data acquired from a supertall building. A comparison with several existing BCS methods that enable to deal with complex values is also provided to demonstrate the effectiveness of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀的映萱完成签到,获得积分10
刚刚
刚刚
exile516发布了新的文献求助10
刚刚
apchong完成签到,获得积分10
1秒前
夏明明完成签到,获得积分10
1秒前
qah发布了新的文献求助10
1秒前
wtian1221完成签到,获得积分10
1秒前
1秒前
yjk完成签到,获得积分10
2秒前
哎呀完成签到 ,获得积分10
2秒前
xxyy发布了新的文献求助30
3秒前
4秒前
麻辣鱼鳞发布了新的文献求助10
4秒前
anhuiwsy完成签到 ,获得积分0
4秒前
5秒前
傲娇的凡之完成签到 ,获得积分10
6秒前
胡胡嘉嘉磊磊完成签到,获得积分10
6秒前
软包电芯发布了新的文献求助10
6秒前
7秒前
7秒前
cp1690发布了新的文献求助10
8秒前
YJH发布了新的文献求助10
9秒前
darren发布了新的文献求助10
9秒前
9秒前
10秒前
拾柒完成签到,获得积分10
11秒前
Dr.CTH发布了新的文献求助30
11秒前
12秒前
科研通AI6应助李彪采纳,获得10
12秒前
Ttttracy完成签到 ,获得积分10
12秒前
www发布了新的文献求助10
12秒前
我不理解完成签到,获得积分10
13秒前
小苏发布了新的文献求助10
13秒前
exile516完成签到,获得积分10
13秒前
vivian发布了新的文献求助10
13秒前
圆听听完成签到 ,获得积分10
14秒前
REBECCA完成签到 ,获得积分10
15秒前
小二完成签到,获得积分10
15秒前
李建行发布了新的文献求助10
15秒前
Ava应助albert采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565327
求助须知:如何正确求助?哪些是违规求助? 4650317
关于积分的说明 14690672
捐赠科研通 4592233
什么是DOI,文献DOI怎么找? 2519494
邀请新用户注册赠送积分活动 1491964
关于科研通互助平台的介绍 1463183