An improved complex multi-task Bayesian compressive sensing approach for compression and reconstruction of SHM data

压缩传感 结构健康监测 计算机科学 算法 任务(项目管理) 采样(信号处理) 傅里叶变换 数据挖掘 工程类 数学 滤波器(信号处理) 结构工程 计算机视觉 数学分析 系统工程
作者
Hua‐Ping Wan,Guan-Sen Dong,Yaozhi Luo,Yi‐Qing Ni
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:167: 108531-108531 被引量:19
标识
DOI:10.1016/j.ymssp.2021.108531
摘要

The long-term structural health monitoring (SHM) provides massive data, leading to a high demand for data transmission and storage. Compressive sensing (CS) has great potential in alleviating this problem by using less samples to recover the complete signals utilizing the sparsity. Vibration data collected by an SHM system is usually sparse in the frequency domain, and the peaks in their Fourier spectra most often correspond to the same frequencies. This underlying commonality among the signals can be utilized by multi-task learning technique to improve the computational efficiency and accuracy. While being real-valued originally, the data after discrete Fourier transformation are in general complex-valued. In this paper, an improved complex multi-task Bayesian CS (CMT-BCS) method is developed for compression and reconstruction of SHM data requiring a high sampling rate. The novelty of the proposed method is twofold: (i) it overcomes the invalidity of the conventional CMT-BCS approach in dealing with the ‘incomplete’ CS problem, and (ii) it improves the computational efficiency of conventional CMT-BCS approach. The former is achieved by restructuring the CMT-BCS formulation, and the latter is realized by sharing a common sampling matrix across all tasks of concern. The improved CMT-BCS is evaluated using the shaking table test data of a scale-down frame model and the real-world SHM data acquired from a supertall building. A comparison with several existing BCS methods that enable to deal with complex values is also provided to demonstrate the effectiveness of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cai完成签到,获得积分10
1秒前
小刺猬完成签到,获得积分10
1秒前
邹z完成签到 ,获得积分10
2秒前
3秒前
结实星星发布了新的文献求助10
3秒前
吕洺旭发布了新的文献求助10
5秒前
shame发布了新的文献求助10
5秒前
萧秋灵完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
Akim应助温暖富采纳,获得10
9秒前
独特的高山完成签到 ,获得积分10
10秒前
嘿嘿应助HtObama采纳,获得10
10秒前
10秒前
lmkpx完成签到,获得积分10
10秒前
水木年华发布了新的文献求助10
11秒前
无花果应助凯凯采纳,获得10
11秒前
万能图书馆应助凯凯采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
大个应助Hxbyn采纳,获得20
13秒前
冰安完成签到,获得积分20
14秒前
14秒前
15秒前
xiaoxiao完成签到 ,获得积分10
15秒前
15秒前
ll发布了新的文献求助10
15秒前
嘿嘿应助IceyCNZ采纳,获得20
15秒前
16秒前
彩色孤晴完成签到,获得积分10
16秒前
18秒前
hhhpass发布了新的文献求助20
18秒前
萌娜梨裟发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
结实星星发布了新的文献求助10
21秒前
22秒前
23秒前
多金多金完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680022
求助须知:如何正确求助?哪些是违规求助? 4995227
关于积分的说明 15171337
捐赠科研通 4839788
什么是DOI,文献DOI怎么找? 2593645
邀请新用户注册赠送积分活动 1546635
关于科研通互助平台的介绍 1504749