An improved complex multi-task Bayesian compressive sensing approach for compression and reconstruction of SHM data

压缩传感 结构健康监测 计算机科学 算法 任务(项目管理) 采样(信号处理) 傅里叶变换 数据挖掘 工程类 数学 滤波器(信号处理) 结构工程 计算机视觉 数学分析 系统工程
作者
Hua‐Ping Wan,Guan-Sen Dong,Yaozhi Luo,Yi‐Qing Ni
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:167: 108531-108531 被引量:19
标识
DOI:10.1016/j.ymssp.2021.108531
摘要

The long-term structural health monitoring (SHM) provides massive data, leading to a high demand for data transmission and storage. Compressive sensing (CS) has great potential in alleviating this problem by using less samples to recover the complete signals utilizing the sparsity. Vibration data collected by an SHM system is usually sparse in the frequency domain, and the peaks in their Fourier spectra most often correspond to the same frequencies. This underlying commonality among the signals can be utilized by multi-task learning technique to improve the computational efficiency and accuracy. While being real-valued originally, the data after discrete Fourier transformation are in general complex-valued. In this paper, an improved complex multi-task Bayesian CS (CMT-BCS) method is developed for compression and reconstruction of SHM data requiring a high sampling rate. The novelty of the proposed method is twofold: (i) it overcomes the invalidity of the conventional CMT-BCS approach in dealing with the ‘incomplete’ CS problem, and (ii) it improves the computational efficiency of conventional CMT-BCS approach. The former is achieved by restructuring the CMT-BCS formulation, and the latter is realized by sharing a common sampling matrix across all tasks of concern. The improved CMT-BCS is evaluated using the shaking table test data of a scale-down frame model and the real-world SHM data acquired from a supertall building. A comparison with several existing BCS methods that enable to deal with complex values is also provided to demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助RC_Wang采纳,获得10
刚刚
丘比特应助rlh采纳,获得10
刚刚
时尚的靖发布了新的文献求助10
1秒前
1秒前
兔子发布了新的文献求助10
1秒前
weizhao发布了新的文献求助10
1秒前
Lucas应助农瑞金采纳,获得10
2秒前
chris chen发布了新的文献求助10
2秒前
隐形曼青应助xh采纳,获得10
2秒前
3秒前
3秒前
Ava应助烤鸭本鸭采纳,获得10
3秒前
3秒前
3秒前
罗劲松完成签到,获得积分10
4秒前
科研F5完成签到,获得积分10
4秒前
诚c发布了新的文献求助10
4秒前
李吉祥完成签到,获得积分10
4秒前
大个应助whitexue采纳,获得10
4秒前
5秒前
5秒前
5秒前
5秒前
wanci应助阿琛采纳,获得10
5秒前
只爱LJT发布了新的文献求助10
6秒前
wxx发布了新的文献求助10
6秒前
6秒前
搞怪代荷完成签到,获得积分10
6秒前
洛洛完成签到,获得积分10
6秒前
研究啥完成签到,获得积分10
7秒前
7秒前
7秒前
灵性书童发布了新的文献求助10
8秒前
徐佳乐发布了新的文献求助10
8秒前
8秒前
Jasper应助典雅的俊驰采纳,获得10
8秒前
乐观完成签到,获得积分10
8秒前
上官若男应助lijiaqi采纳,获得10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261822
求助须知:如何正确求助?哪些是违规求助? 4422960
关于积分的说明 13768092
捐赠科研通 4297447
什么是DOI,文献DOI怎么找? 2357968
邀请新用户注册赠送积分活动 1354348
关于科研通互助平台的介绍 1315454