摘要
ConspectusPhotochromic compounds are well-known for their promising applications in many areas. In this context, many different photochromic families have been developed. As the early study of these photochromic compounds was mainly focused on the organic system, their photochromic reactivity was mainly derived from the singlet excited state. We hypothesized that the incorporation of the photochromic ligand to the transition metal complex and coordination complex systems would not only render the triplet state of the organic photochromic system more readily accessible due to the large spin–orbit coupling of the heavy metal center but also would lead to ready extension of the excitation wavelength to less destructive longer wavelength low-energy excitation. On the other hand, the long-lived triplet excited states of the metal complexes are also suitable for energy or electron transfer processes, which should lead to new photochromic behavior and photoswitchable functional properties.Through the incorporation of the stilbene-, azo-, spirooxazine-, and dithienylethene-containing ligands to transition metal complex systems with heavy metal centers and suitable excited states, triplet state photosensitized photochromism has been achieved. With the triplet state photosensitization, the photochromism of these compounds could be extended from the high energy UV region to the visible region. In the development of dithienylethene-containing ligands, we have adopted an alternative strategy, which involves the incorporation of nitrogen and sulfur heterocycles that directly form part of the dithienylethene framework as ligands to exert a much stronger perturbation and influence on the excited state properties of the photochromic unit by the metal center. On the basis of the new design, wide ranges of dithienylethene-containing ligands, including phenanthrolines, 2-pyridylimidazoles, N-pyridylimidazol-2-ylidenes, cyclometalating thienylpyridines, β-diketonates, and β-ketoiminates have been designed and incorporated into various coordination systems. Apart from the photosensitization, tuning of the closed form absorption and photochromic behavior based on the perturbation of the metal center, coordination-assisted planarization, modification of the ancillary ligands and introduction of various electronic excited states derived from the coordination system have been successfully demonstrated. This strategy can be used for developing NIR photochromic dithienylethenes. With the above effects observed upon the coordination to different transition metal centers and central atoms, this strategy offers a simple and effective way for the modification of the photochromic characteristics. Moreover, the emission and other functional properties of the coordination systems could also be photoswitched by the photochromic reactions.