Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox

阳离子聚合 氧化还原 化学 锂(药物) 无机化学 氧气 萤石 阴极 电化学 半反应 氧化物 电极 有机化学 物理化学 医学 内分泌学
作者
Chun Zhan,Zhenpeng Yao,Jun Lü,Lu Ma,V.A. Maroni,Liang Li,Eungje Lee,Ekin Esen,Tianpin Wu,Jianguo Wen,Yang Ren,Christopher S. Johnson,Michael M. Thackeray,Maria K. Y. Chan,Chris Wolverton,Khalil Amine
出处
期刊:Nature Energy [Springer Nature]
卷期号:2 (12): 963-971 被引量:168
标识
DOI:10.1038/s41560-017-0043-6
摘要

Anionic redox reactions in cathodes of lithium-ion batteries are allowing opportunities to double or even triple the energy density. However, it is still challenging to develop a cathode, especially with Earth-abundant elements, that enables anionic redox activity for real-world applications, primarily due to limited strategies to intercept the oxygenates from further irreversible oxidation to O2 gas. Here we report simultaneous iron and oxygen redox activity in a Li-rich anti-fluorite Li5FeO4 electrode. During the removal of the first two Li ions, the oxidation potential of O2− is lowered to approximately 3.5 V versus Li+/Li0, at which potential the cationic oxidation occurs concurrently. These anionic and cationic redox reactions show high reversibility without any obvious O2 gas release. Moreover, this study provides an insightful guide to designing high-capacity cathodes with reversible oxygen redox activity by simply introducing oxygen ions that are exclusively coordinated by Li+. It is challenging to exploit anionic redox activity to boost performance of battery electrodes, especially for anti-fluorite structures. Here the authors report simultaneous anionic and cationic redox in Li5FeO4, which enables its high capacity and eliminates the undesired oxygen gas release.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eva发布了新的文献求助10
刚刚
张有志应助本杰明采纳,获得30
刚刚
Dandelion完成签到,获得积分10
刚刚
完美世界应助葛辉辉采纳,获得10
1秒前
龙泉完成签到 ,获得积分10
1秒前
Khr1stINK发布了新的文献求助20
1秒前
美女发布了新的文献求助10
1秒前
汉堡包应助烫嘴普通话采纳,获得10
1秒前
长颈鹿完成签到,获得积分10
3秒前
Koi完成签到,获得积分10
3秒前
打卤完成签到,获得积分10
3秒前
CodeCraft应助Intro采纳,获得10
4秒前
SciGPT应助cat采纳,获得10
4秒前
Minkslion发布了新的文献求助10
4秒前
5秒前
酷波er应助细腻的麦片采纳,获得10
6秒前
lurenjia009完成签到,获得积分10
7秒前
7秒前
科研通AI5应助huangyi采纳,获得10
8秒前
yxy完成签到,获得积分10
8秒前
Orange应助yam001采纳,获得30
8秒前
8秒前
竹斟酒完成签到,获得积分10
9秒前
9秒前
9秒前
请叫我风吹麦浪应助Wxd0211采纳,获得10
9秒前
9秒前
9秒前
深情安青应助美女采纳,获得10
10秒前
111完成签到,获得积分10
10秒前
葛辉辉完成签到,获得积分10
11秒前
kangkang发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
SciGPT应助ye采纳,获得10
13秒前
乐乐应助自信晟睿采纳,获得10
13秒前
葛辉辉发布了新的文献求助10
13秒前
14秒前
Wxd0211完成签到,获得积分20
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762