Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks

计算机科学 矩阵分解 非负矩阵分解 图形 链接(几何体) 正规化(语言学) 算法 时态数据库 因式分解 人工智能 理论计算机科学 数据挖掘 特征向量 计算机网络 量子力学 物理
作者
Xiaoke Ma,Penggang Sun,Yu Wang
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:496: 121-136 被引量:90
标识
DOI:10.1016/j.physa.2017.12.092
摘要

Many networks derived from society and nature are temporal and incomplete. The temporal link prediction problem in networks is to predict links at time T+1 based on a given temporal network from time 1 to T, which is essential to important applications. The current algorithms either predict the temporal links by collapsing the dynamic networks or collapsing features derived from each network, which are criticized for ignoring the connection among slices. to overcome the issue, we propose a novel graph regularized nonnegative matrix factorization algorithm (GrNMF) for the temporal link prediction problem without collapsing the dynamic networks. To obtain the feature for each network from 1 to t, GrNMF factorizes the matrix associated with networks by setting the rest networks as regularization, which provides a better way to characterize the topological information of temporal links. Then, the GrNMF algorithm collapses the feature matrices to predict temporal links. Compared with state-of-the-art methods, the proposed algorithm exhibits significantly improved accuracy by avoiding the collapse of temporal networks. Experimental results of a number of artificial and real temporal networks illustrate that the proposed method is not only more accurate but also more robust than state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
FashionBoy应助chang采纳,获得10
2秒前
2秒前
ZHANG完成签到,获得积分10
2秒前
阁主完成签到,获得积分10
2秒前
不得完成签到,获得积分10
2秒前
2秒前
3秒前
共享精神应助独步旋碟采纳,获得10
3秒前
3秒前
过氧化氢发布了新的文献求助20
3秒前
喜喜发布了新的文献求助10
4秒前
彭于晏应助苹果采纳,获得10
5秒前
5秒前
6秒前
6秒前
答辩发布了新的文献求助10
8秒前
8秒前
8秒前
大模型应助阁主采纳,获得10
8秒前
9秒前
10秒前
10秒前
popcorn完成签到,获得积分10
10秒前
10秒前
10秒前
twotwomi完成签到,获得积分10
10秒前
ly完成签到,获得积分20
11秒前
ChenYifei完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
Lucas应助来日方长采纳,获得10
12秒前
chang发布了新的文献求助10
12秒前
小巫发布了新的文献求助10
13秒前
周娅敏发布了新的文献求助10
14秒前
华仔应助答辩采纳,获得10
14秒前
caixiayin发布了新的文献求助10
14秒前
14秒前
威武的冷风关注了科研通微信公众号
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650