Engineering Stepped Edge Surface Structures of MoS2 Sheet Stacks to Accelerate the Hydrogen Evolution Reaction

过电位 GSM演进的增强数据速率 材料科学 电催化剂 吸附 纳米技术 化学物理 化学 电极 物理化学 电化学 计算机科学 电信
作者
Jue Hu,Bolong Huang,Chengxu Zhang,Shihe Yang
出处
期刊:Meeting abstracts 卷期号:MA2018-01 (37): 2232-2232 被引量:1
标识
DOI:10.1149/ma2018-01/37/2232
摘要

Two-dimensional molybdenum sulfide is an attractive noble-metal-free electrocatalyst for the hydrogen evolution reaction (HER). Significant efforts have been spent on increasing the number of exposed edge sites [1]. However, little attention has been paid to devising edge surface structures of MoS 2 sheet stacks to promote the HER kinetics [2]. Herein we report the first demonstration of significantly enhanced HER kinetics by tailoring a stepped edge surface structure of MoS 2 multilayers with respect to a flat edge surface. We provide an unambiguous interpretation on the HER performance difference in terms of the different H bonding on the stepped edge surface (se-MoS 2 ) and on the flat edge surface (fe-MoS 2 ). Vertical arrays of MoS 2 sheets terminated with such a stepped surface structure have proved to be an outstanding HER electrocatalyst with overpotential of 104 mV at 10 mA/cm 2 , exchange current density of 0.2 mA/cm 2 and high stability (Figure 1). DFT calculations suggest a more optimal Δ G H of the active se-MoS 2 edge surface than that of the fe-MoS 2 edge surface, and thereby a faster HER kinetics (Figure 1a). A perfectly designed stepped edge surface terminated MoS 2 sheet array is schematically depicted in Figure 1d, in which the unique vertically terminated, stepped surface structure ensures an optimal hydrogen adsorption energy (Δ G H is ~0.02 eV); the vertical array would permit ultrafast electron transport and promote HER performance [3]. This approach presented here provides a new insight that we tailor the edge active sites to modulate the performance of HER and should be applicable to generalized transition-metal-dichalcogenide catalysts, by engineering their surface structures. we expect that our stepped-edge engineering strategy will prove more generally effective for creating catalysts from abundant noble-metal-free layered materials for hydrogen evolution. References [1] Jaramillo TF, Jorgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H 2 evolution from MoS 2 nanocatalysts. Science. 2007;317:100-2. [2] Hu J, Zhang C, Meng X, Lin H, Hu C, Long X, et al. Hydrogen evolution electrocatalysis with binary-nonmetal transition metal compounds. J Mater Chem A. 2017;5:5995-6012. [3] Hu J, Huang B, Zhang C, Wang Z, An Y, Zhou D, et al. Engineering stepped edge surface structures of MoS 2 sheet stacks to accelerate the hydrogen evolution reaction. Energy Environ Sci. 2017;10:593-603. Figure caption (a) Free energy diagram for hydrogen adsorption at the stepped and flat MoS2 edges with one-quarter hydrogen coverage on one of the MoS2 layers. The molecular structures depicted at the top and bottom of (a) show H adsorption on the fe-MoS2 and se-MoS2 edges, respectively. The yellow, dark cyan and violet spheres represent S, Mo and H atoms, respectively. (b) HRTEM image and schematic illustration of the se-MoS2 layers, which clearly shows that crystal fringes of the S-Mo-S layers along the edge are stepped. (c) Polarization curves of the commercial MoS2, r-MoS2, fe-MoS2 and se-MoS2, and commercial Pt/C catalysts in 0.5M H2SO4 solution. (d) Schematic illustration of the designed stepped edge surface terminated MoS2 sheet array, in which the unique vertically terminated, stepped surface structure ensures optimal hydrogen adsorption energy (ΔGH is ~0.02 eV) and ultrafast electron transport to the stepped MoS2 edge surface. Figure 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助小超人采纳,获得10
刚刚
gdh发布了新的文献求助10
1秒前
Manxi发布了新的文献求助10
1秒前
1秒前
1秒前
甜甜玫瑰应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
HAL应助科研通管家采纳,获得10
2秒前
2秒前
Maestro_S应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
甜甜玫瑰应助科研通管家采纳,获得10
2秒前
Maestro_S应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
HAL应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Maestro_S应助科研通管家采纳,获得10
3秒前
3秒前
nininidoc完成签到,获得积分10
4秒前
6秒前
zsgot3完成签到,获得积分10
6秒前
zy驳回了今后应助
7秒前
斯文明杰发布了新的文献求助10
7秒前
Iwan完成签到,获得积分10
7秒前
可爱的函函应助美好忆南采纳,获得10
8秒前
8秒前
Manxi完成签到,获得积分10
9秒前
光翟君完成签到,获得积分20
9秒前
超级的白竹完成签到,获得积分20
9秒前
10秒前
10秒前
hkh发布了新的文献求助10
11秒前
研友_VZG7GZ应助婷婷采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633192
求助须知:如何正确求助?哪些是违规求助? 4029241
关于积分的说明 12466657
捐赠科研通 3715470
什么是DOI,文献DOI怎么找? 2050148
邀请新用户注册赠送积分活动 1081735
科研通“疑难数据库(出版商)”最低求助积分说明 964033