Modeling the Dynamics of Community Resilience to Coastal Hazards Using a Bayesian Network

人口 弹性(材料科学) 危害 地理 自然灾害 社区复原力 脆弱性(计算) 统计 环境资源管理 环境科学 计算机科学 计量经济学 数学 生态学 人口学 气象学 热力学 生物 操作系统 物理 社会学 冗余(工程) 计算机安全
作者
Heng Cai,Nina Lam,Lei Zou,Yi Qiang
出处
期刊:Annals of the American Association of Geographers [Taylor & Francis]
卷期号:108 (5): 1260-1279 被引量:39
标识
DOI:10.1080/24694452.2017.1421896
摘要

Studies on how variables of community resilience to natural hazards interact as a system that affects the final resilience (i.e., their dynamical linkages) have rarely been conducted. Bayesian network (BN), which represents the interdependencies among variables in a graph while expressing the uncertainty in the form of probability distributions, offers an effective way to investigate the interactions among different resilience components and addresses the natural–human system as a whole. This article employs a BN to study the interdependencies of ten resilience variables and population change in the Lower Mississippi River Basin (LMRB) at the census block group scale. A genetic algorithm was used to identify an optimal BN where population change, a cumulative resilience indicator, was the target variable. The genetic algorithm yielded an optimized BN model with a cross-validation accuracy of 67 percent over a period of 906 generations. Six variables were found to have direct impacts on population change, including level of threat from coastal hazards, hazard damage, distance to coastline, employment rate, percentage of housing units built before 1970, and percentage of households with a female householder. The remaining four variables were indirect variables, including percentage agriculture land, percentage flood zone area, percentage owner-occupied house units, and population density. Each variable has a conditional probability table so that its impacts on the probability of population change can be evaluated as it propagates through the network. These probabilities could be used for scenario modeling to help inform policies to reduce vulnerability and enhance disaster resilience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
magictoo完成签到,获得积分10
1秒前
1秒前
大大完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助150
3秒前
tfldog发布了新的文献求助10
4秒前
小薛完成签到,获得积分10
4秒前
K先生完成签到,获得积分10
5秒前
5秒前
樊小胖发布了新的文献求助10
5秒前
12完成签到,获得积分10
5秒前
bwbpuh3完成签到,获得积分10
6秒前
Morris完成签到,获得积分10
6秒前
6秒前
bkagyin应助iceice采纳,获得10
6秒前
嗦了蜜发布了新的文献求助10
7秒前
下课了吧完成签到,获得积分10
7秒前
niuniu完成签到,获得积分10
9秒前
虚心天亦完成签到,获得积分10
9秒前
我姓孙发布了新的文献求助10
10秒前
10秒前
没有神的过往完成签到,获得积分10
11秒前
悲伤胡萝卜完成签到 ,获得积分10
12秒前
15秒前
niuniu发布了新的文献求助10
15秒前
16秒前
精明的谷丝完成签到 ,获得积分10
16秒前
17秒前
doclarrin完成签到 ,获得积分10
17秒前
陶醉的妙竹完成签到 ,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
栀璃鸳挽发布了新的文献求助10
21秒前
海盗船长发布了新的文献求助10
22秒前
樊小胖完成签到,获得积分10
22秒前
无花果应助一个饼采纳,获得10
23秒前
24秒前
自觉梦山完成签到,获得积分10
25秒前
今后应助yiyi163采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4919696
求助须知:如何正确求助?哪些是违规求助? 4191630
关于积分的说明 13018187
捐赠科研通 3961861
什么是DOI,文献DOI怎么找? 2171918
邀请新用户注册赠送积分活动 1189844
关于科研通互助平台的介绍 1098498