Modeling the Dynamics of Community Resilience to Coastal Hazards Using a Bayesian Network

人口 弹性(材料科学) 危害 地理 自然灾害 社区复原力 脆弱性(计算) 统计 环境资源管理 环境科学 计算机科学 计量经济学 数学 生态学 人口学 气象学 热力学 生物 操作系统 物理 社会学 冗余(工程) 计算机安全
作者
Heng Cai,Nina Lam,Lei Zou,Yi Qiang
出处
期刊:Annals of the American Association of Geographers [Informa]
卷期号:108 (5): 1260-1279 被引量:39
标识
DOI:10.1080/24694452.2017.1421896
摘要

Studies on how variables of community resilience to natural hazards interact as a system that affects the final resilience (i.e., their dynamical linkages) have rarely been conducted. Bayesian network (BN), which represents the interdependencies among variables in a graph while expressing the uncertainty in the form of probability distributions, offers an effective way to investigate the interactions among different resilience components and addresses the natural–human system as a whole. This article employs a BN to study the interdependencies of ten resilience variables and population change in the Lower Mississippi River Basin (LMRB) at the census block group scale. A genetic algorithm was used to identify an optimal BN where population change, a cumulative resilience indicator, was the target variable. The genetic algorithm yielded an optimized BN model with a cross-validation accuracy of 67 percent over a period of 906 generations. Six variables were found to have direct impacts on population change, including level of threat from coastal hazards, hazard damage, distance to coastline, employment rate, percentage of housing units built before 1970, and percentage of households with a female householder. The remaining four variables were indirect variables, including percentage agriculture land, percentage flood zone area, percentage owner-occupied house units, and population density. Each variable has a conditional probability table so that its impacts on the probability of population change can be evaluated as it propagates through the network. These probabilities could be used for scenario modeling to help inform policies to reduce vulnerability and enhance disaster resilience.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啾啾发布了新的文献求助10
刚刚
大模型应助17采纳,获得10
1秒前
拼搏的黑夜完成签到,获得积分10
2秒前
2秒前
2秒前
淑芬发布了新的文献求助10
2秒前
嘿嘿发布了新的文献求助10
3秒前
momo应助uuuu采纳,获得10
3秒前
nb小子完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
小洋完成签到,获得积分10
7秒前
NIHAO完成签到,获得积分10
7秒前
Achhz发布了新的文献求助10
8秒前
LX完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
FadeSv完成签到,获得积分10
9秒前
sulin关注了科研通微信公众号
10秒前
NIHAO发布了新的文献求助10
10秒前
Chris发布了新的文献求助10
11秒前
不舍天真发布了新的文献求助10
11秒前
11秒前
酷波er应助熊猫采纳,获得10
11秒前
年轻迪奥发布了新的文献求助10
13秒前
13秒前
顾矜应助王艺霖采纳,获得10
13秒前
NI发布了新的文献求助10
14秒前
FIREWORK完成签到,获得积分10
14秒前
lwb完成签到,获得积分10
15秒前
15秒前
小洋关注了科研通微信公众号
15秒前
搜集达人应助LBQ采纳,获得10
16秒前
求知的周发布了新的文献求助30
20秒前
20秒前
彩色耳机完成签到,获得积分10
20秒前
平常兰发布了新的文献求助10
21秒前
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049