Modeling the Dynamics of Community Resilience to Coastal Hazards Using a Bayesian Network

人口 弹性(材料科学) 危害 地理 自然灾害 社区复原力 脆弱性(计算) 统计 环境资源管理 环境科学 计算机科学 计量经济学 数学 生态学 人口学 气象学 热力学 生物 操作系统 物理 社会学 冗余(工程) 计算机安全
作者
Heng Cai,Nina Lam,Lei Zou,Yi Qiang
出处
期刊:Annals of the American Association of Geographers [Informa]
卷期号:108 (5): 1260-1279 被引量:39
标识
DOI:10.1080/24694452.2017.1421896
摘要

Studies on how variables of community resilience to natural hazards interact as a system that affects the final resilience (i.e., their dynamical linkages) have rarely been conducted. Bayesian network (BN), which represents the interdependencies among variables in a graph while expressing the uncertainty in the form of probability distributions, offers an effective way to investigate the interactions among different resilience components and addresses the natural–human system as a whole. This article employs a BN to study the interdependencies of ten resilience variables and population change in the Lower Mississippi River Basin (LMRB) at the census block group scale. A genetic algorithm was used to identify an optimal BN where population change, a cumulative resilience indicator, was the target variable. The genetic algorithm yielded an optimized BN model with a cross-validation accuracy of 67 percent over a period of 906 generations. Six variables were found to have direct impacts on population change, including level of threat from coastal hazards, hazard damage, distance to coastline, employment rate, percentage of housing units built before 1970, and percentage of households with a female householder. The remaining four variables were indirect variables, including percentage agriculture land, percentage flood zone area, percentage owner-occupied house units, and population density. Each variable has a conditional probability table so that its impacts on the probability of population change can be evaluated as it propagates through the network. These probabilities could be used for scenario modeling to help inform policies to reduce vulnerability and enhance disaster resilience.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hey完成签到 ,获得积分10
1秒前
Anita发布了新的文献求助10
1秒前
小明大明完成签到,获得积分10
1秒前
2秒前
丘比特应助小心薛了你采纳,获得10
2秒前
2秒前
半生半熟完成签到,获得积分10
3秒前
yznfly举报俊俏的紫菜求助涉嫌违规
3秒前
wanci应助TTUTT采纳,获得10
3秒前
3秒前
Selena完成签到 ,获得积分10
3秒前
fat发布了新的文献求助10
4秒前
科研通AI6应助yi采纳,获得10
4秒前
小蘑菇应助JiaQi采纳,获得10
5秒前
bkagyin应助LLP采纳,获得10
5秒前
深情安青应助pingan采纳,获得10
6秒前
SciGPT应助Mlwwq采纳,获得10
6秒前
7秒前
叁叁完成签到 ,获得积分10
7秒前
乐乐应助小明大明采纳,获得10
7秒前
欢乐发布了新的文献求助10
8秒前
静待花开发布了新的文献求助10
8秒前
1101592875发布了新的文献求助10
8秒前
aaaaaa完成签到,获得积分10
9秒前
9秒前
鱼叔完成签到,获得积分10
11秒前
策略完成签到 ,获得积分10
13秒前
领导范儿应助rainbow采纳,获得10
13秒前
yahosun发布了新的文献求助10
13秒前
13秒前
北儿116应助xuli21315采纳,获得30
13秒前
14秒前
ting完成签到,获得积分10
14秒前
15秒前
pingan完成签到,获得积分10
17秒前
sciscisci完成签到,获得积分10
17秒前
18秒前
JiaQi发布了新的文献求助10
19秒前
pingan发布了新的文献求助10
19秒前
jinyu完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601539
求助须知:如何正确求助?哪些是违规求助? 4687052
关于积分的说明 14847124
捐赠科研通 4681263
什么是DOI,文献DOI怎么找? 2539418
邀请新用户注册赠送积分活动 1506305
关于科研通互助平台的介绍 1471297