Modeling the Dynamics of Community Resilience to Coastal Hazards Using a Bayesian Network

人口 弹性(材料科学) 危害 地理 自然灾害 社区复原力 脆弱性(计算) 统计 环境资源管理 环境科学 计算机科学 计量经济学 数学 生态学 人口学 气象学 热力学 生物 操作系统 物理 社会学 冗余(工程) 计算机安全
作者
Heng Cai,Nina Lam,Lei Zou,Yi Qiang
出处
期刊:Annals of the American Association of Geographers [Informa]
卷期号:108 (5): 1260-1279 被引量:39
标识
DOI:10.1080/24694452.2017.1421896
摘要

Studies on how variables of community resilience to natural hazards interact as a system that affects the final resilience (i.e., their dynamical linkages) have rarely been conducted. Bayesian network (BN), which represents the interdependencies among variables in a graph while expressing the uncertainty in the form of probability distributions, offers an effective way to investigate the interactions among different resilience components and addresses the natural–human system as a whole. This article employs a BN to study the interdependencies of ten resilience variables and population change in the Lower Mississippi River Basin (LMRB) at the census block group scale. A genetic algorithm was used to identify an optimal BN where population change, a cumulative resilience indicator, was the target variable. The genetic algorithm yielded an optimized BN model with a cross-validation accuracy of 67 percent over a period of 906 generations. Six variables were found to have direct impacts on population change, including level of threat from coastal hazards, hazard damage, distance to coastline, employment rate, percentage of housing units built before 1970, and percentage of households with a female householder. The remaining four variables were indirect variables, including percentage agriculture land, percentage flood zone area, percentage owner-occupied house units, and population density. Each variable has a conditional probability table so that its impacts on the probability of population change can be evaluated as it propagates through the network. These probabilities could be used for scenario modeling to help inform policies to reduce vulnerability and enhance disaster resilience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Anna发布了新的文献求助50
1秒前
yjyjj完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
皮卡丘比特应助齐婷婷采纳,获得20
2秒前
Proustian发布了新的文献求助10
3秒前
浮游应助栀子采纳,获得10
3秒前
wcwzcz应助栀子采纳,获得10
3秒前
3秒前
4秒前
Wwww完成签到 ,获得积分10
4秒前
4秒前
香蕉馒头发布了新的文献求助10
4秒前
4秒前
idealist0315发布了新的文献求助10
5秒前
谦让皮卡丘完成签到,获得积分10
5秒前
De.完成签到 ,获得积分10
6秒前
6秒前
6秒前
贾哲宇发布了新的文献求助10
6秒前
7秒前
vlog123发布了新的文献求助10
7秒前
十字路口完成签到 ,获得积分10
7秒前
健康的正豪完成签到,获得积分10
8秒前
chenjing2012发布了新的文献求助10
8秒前
8秒前
搜集达人应助will采纳,获得10
8秒前
轴承完成签到 ,获得积分10
8秒前
sliver完成签到,获得积分10
8秒前
顾耷发布了新的文献求助10
9秒前
9秒前
充电宝应助idealist0315采纳,获得10
9秒前
动听月饼完成签到,获得积分10
9秒前
小杭76应助慧慧采纳,获得10
10秒前
小疯子发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434707
求助须知:如何正确求助?哪些是违规求助? 4547028
关于积分的说明 14205727
捐赠科研通 4467036
什么是DOI,文献DOI怎么找? 2448402
邀请新用户注册赠送积分活动 1439329
关于科研通互助平台的介绍 1416068