Modeling the Dynamics of Community Resilience to Coastal Hazards Using a Bayesian Network

人口 弹性(材料科学) 危害 地理 自然灾害 社区复原力 脆弱性(计算) 统计 环境资源管理 环境科学 计算机科学 计量经济学 数学 生态学 人口学 气象学 热力学 生物 操作系统 物理 社会学 冗余(工程) 计算机安全
作者
Heng Cai,Nina Lam,Lei Zou,Yi Qiang
出处
期刊:Annals of the American Association of Geographers [Informa]
卷期号:108 (5): 1260-1279 被引量:39
标识
DOI:10.1080/24694452.2017.1421896
摘要

Studies on how variables of community resilience to natural hazards interact as a system that affects the final resilience (i.e., their dynamical linkages) have rarely been conducted. Bayesian network (BN), which represents the interdependencies among variables in a graph while expressing the uncertainty in the form of probability distributions, offers an effective way to investigate the interactions among different resilience components and addresses the natural–human system as a whole. This article employs a BN to study the interdependencies of ten resilience variables and population change in the Lower Mississippi River Basin (LMRB) at the census block group scale. A genetic algorithm was used to identify an optimal BN where population change, a cumulative resilience indicator, was the target variable. The genetic algorithm yielded an optimized BN model with a cross-validation accuracy of 67 percent over a period of 906 generations. Six variables were found to have direct impacts on population change, including level of threat from coastal hazards, hazard damage, distance to coastline, employment rate, percentage of housing units built before 1970, and percentage of households with a female householder. The remaining four variables were indirect variables, including percentage agriculture land, percentage flood zone area, percentage owner-occupied house units, and population density. Each variable has a conditional probability table so that its impacts on the probability of population change can be evaluated as it propagates through the network. These probabilities could be used for scenario modeling to help inform policies to reduce vulnerability and enhance disaster resilience.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qianqian完成签到,获得积分10
刚刚
1秒前
烯灯发布了新的文献求助10
1秒前
小马甲应助somous采纳,获得20
1秒前
ARIA完成签到,获得积分10
2秒前
Breeze完成签到 ,获得积分10
2秒前
感动归尘完成签到,获得积分10
2秒前
2秒前
2秒前
华仔应助xuan采纳,获得10
2秒前
3秒前
CodeCraft应助Liens采纳,获得10
3秒前
3秒前
3秒前
ztq完成签到 ,获得积分10
4秒前
穆思柔完成签到,获得积分10
4秒前
4秒前
脑洞疼应助zxyan采纳,获得10
4秒前
科研通AI6应助zhouleiwang采纳,获得10
4秒前
冷傲惠发布了新的文献求助10
4秒前
5秒前
leyang关注了科研通微信公众号
6秒前
顾矜应助张欣宇采纳,获得10
6秒前
6秒前
王婷静完成签到,获得积分10
6秒前
6秒前
yfy_fairy完成签到,获得积分10
6秒前
神明发布了新的文献求助10
7秒前
cc发布了新的文献求助10
7秒前
Salen-Cr发布了新的文献求助10
7秒前
7秒前
科研通AI6应助灿烂千阳采纳,获得10
7秒前
泡芙应助Yiminhua采纳,获得10
7秒前
whj完成签到,获得积分20
7秒前
科研通AI6应助biu采纳,获得10
8秒前
Triumph完成签到,获得积分10
8秒前
xxx完成签到,获得积分20
8秒前
Liz1054发布了新的文献求助10
8秒前
8秒前
慕青应助可爱的海莲采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836