Modeling the Dynamics of Community Resilience to Coastal Hazards Using a Bayesian Network

人口 弹性(材料科学) 危害 地理 自然灾害 社区复原力 脆弱性(计算) 统计 环境资源管理 环境科学 计算机科学 计量经济学 数学 生态学 人口学 气象学 热力学 生物 操作系统 物理 社会学 冗余(工程) 计算机安全
作者
Heng Cai,Nina Lam,Lei Zou,Yi Qiang
出处
期刊:Annals of the American Association of Geographers [Informa]
卷期号:108 (5): 1260-1279 被引量:39
标识
DOI:10.1080/24694452.2017.1421896
摘要

Studies on how variables of community resilience to natural hazards interact as a system that affects the final resilience (i.e., their dynamical linkages) have rarely been conducted. Bayesian network (BN), which represents the interdependencies among variables in a graph while expressing the uncertainty in the form of probability distributions, offers an effective way to investigate the interactions among different resilience components and addresses the natural–human system as a whole. This article employs a BN to study the interdependencies of ten resilience variables and population change in the Lower Mississippi River Basin (LMRB) at the census block group scale. A genetic algorithm was used to identify an optimal BN where population change, a cumulative resilience indicator, was the target variable. The genetic algorithm yielded an optimized BN model with a cross-validation accuracy of 67 percent over a period of 906 generations. Six variables were found to have direct impacts on population change, including level of threat from coastal hazards, hazard damage, distance to coastline, employment rate, percentage of housing units built before 1970, and percentage of households with a female householder. The remaining four variables were indirect variables, including percentage agriculture land, percentage flood zone area, percentage owner-occupied house units, and population density. Each variable has a conditional probability table so that its impacts on the probability of population change can be evaluated as it propagates through the network. These probabilities could be used for scenario modeling to help inform policies to reduce vulnerability and enhance disaster resilience.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浮游应助xiaofu采纳,获得10
1秒前
Lucas应助中午采纳,获得10
1秒前
SD完成签到 ,获得积分10
1秒前
pangpanghu完成签到,获得积分10
1秒前
李科生完成签到,获得积分20
1秒前
jrz完成签到,获得积分10
2秒前
2秒前
4477完成签到,获得积分10
2秒前
韩小寒qqq完成签到,获得积分10
2秒前
我又可以了完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
AN应助sinlar采纳,获得100
4秒前
无极微光应助cong采纳,获得20
4秒前
乌苏苏完成签到,获得积分20
4秒前
李科生发布了新的文献求助10
4秒前
4秒前
4秒前
Lily完成签到,获得积分10
4秒前
打打应助开心的幼珊采纳,获得10
4秒前
小二郎应助棋子采纳,获得10
5秒前
5秒前
5秒前
Tiffy发布了新的文献求助10
5秒前
wwywzw1314发布了新的文献求助10
5秒前
乐乐侠发布了新的文献求助10
5秒前
lijf2024完成签到,获得积分10
5秒前
6秒前
科研通AI6应助冷艳中蓝采纳,获得10
6秒前
6秒前
喵喵发布了新的文献求助10
6秒前
7秒前
Gentleman完成签到,获得积分10
7秒前
NexusExplorer应助aaa北大街采纳,获得10
7秒前
7秒前
禾斗石开通完成签到,获得积分10
7秒前
8秒前
8秒前
驿路梨花完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285