五角形
支持向量机
粒子群优化
变压器
模式识别(心理学)
补语(音乐)
计算机科学
人工智能
数据挖掘
算法
工程类
数学
化学
电气工程
基因
表型
生物化学
电压
互补
几何学
作者
Youcef Benmahamed,M. Teguar,A. Boubakeur
出处
期刊:IEEE Transactions on Dielectrics and Electrical Insulation
[Institute of Electrical and Electronics Engineers]
日期:2017-12-01
卷期号:24 (6): 3443-3451
被引量:73
标识
DOI:10.1109/tdei.2017.006841
摘要
The carried out investigations deal with the application of machine learning algorithms to Duval Pentagon 1 graphical method for the diagnosis of transformer oil. In fact, combined to graphical methods, pattern recognition aims to may complement. For this purpose, we have used the Support Vector Machine (SVM) and the K-Nearest Neighbor (KNN) algorithms combined to the Duval method. The SVM parameters have been optimized with the Particle Swarm Optimization (PSO). Inspired from IEC and IEEE, five classes namely PD, D1, D2, T1&T2, and T3 have been adopted. The combined algorithms were verified using 155 samples from IEC TC 10 and related databases. We found that KNN, SVM may complement the Duval Pentagon 1 diagnosis method.
科研通智能强力驱动
Strongly Powered by AbleSci AI