A deep CNN based multi-class classification of Alzheimer's disease using MRI

判别式 人工智能 计算机科学 深度学习 卷积神经网络 模式识别(心理学) 分类器(UML) 认知障碍 认知 特征学习 机器学习 神经科学 心理学
作者
Ammarah Farooq,Syed Muhammad Anwar,Muhammad Awais,Saad Rehman
标识
DOI:10.1109/ist.2017.8261460
摘要

In the recent years, deep learning has gained huge fame in solving problems from various fields including medical image analysis. This work proposes a deep convolutional neural network based pipeline for the diagnosis of Alzheimer's disease and its stages using magnetic resonance imaging (MRI) scans. Alzheimer's disease causes permanent damage to the brain cells associated with memory and thinking skills. The diagnosis of Alzheimer's in elderly people is quite difficult and requires a highly discriminative feature representation for classification due to similar brain patterns and pixel intensities. Deep learning techniques are capable of learning such representations from data. In this paper, a 4-way classifier is implemented to classify Alzheimer's (AD), mild cognitive impairment (MCI), late mild cognitive impairment (LMCI) and healthy persons. Experiments are performed using ADNI dataset on a high performance graphical processing unit based system and new state-of-the-art results are obtained for multiclass classification of the disease. The proposed technique results in a prediction accuracy of 98.8%, which is a noticeable increase in accuracy as compared to the previous studies and clearly reveals the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mcdreamy完成签到,获得积分10
刚刚
pluto应助xyxsmile采纳,获得10
刚刚
刚刚
LBQ完成签到,获得积分10
1秒前
Abel完成签到,获得积分10
1秒前
传统的纸飞机完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
树风完成签到,获得积分10
5秒前
刚好发布了新的文献求助10
5秒前
9秒前
枫叶完成签到 ,获得积分10
10秒前
ED应助wd采纳,获得10
10秒前
科目三应助小小怪采纳,获得10
11秒前
刚好完成签到,获得积分10
12秒前
cui完成签到,获得积分10
14秒前
阿V完成签到,获得积分10
15秒前
狄芷巧发布了新的文献求助10
15秒前
ww完成签到,获得积分10
17秒前
cui发布了新的文献求助10
19秒前
田様应助杜俊采纳,获得10
20秒前
21秒前
caicifeng发布了新的文献求助10
21秒前
简单十三完成签到,获得积分10
22秒前
打打应助丁真采纳,获得10
22秒前
好大一个赣宝完成签到,获得积分10
22秒前
李爱国应助裴敏采纳,获得10
23秒前
23秒前
23秒前
所所应助精明雁露采纳,获得10
24秒前
11完成签到 ,获得积分10
24秒前
羊知鱼完成签到,获得积分10
24秒前
深情安青应助abbsdan采纳,获得30
25秒前
LYSM应助abbsdan采纳,获得10
25秒前
机灵夜云发布了新的文献求助10
27秒前
老金金完成签到 ,获得积分10
27秒前
科目三应助Sosoxu采纳,获得10
28秒前
小谢不谢发布了新的文献求助10
28秒前
sci完成签到 ,获得积分10
29秒前
狄芷巧完成签到,获得积分10
30秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954299
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099026
捐赠科研通 3230828
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801651