响应度
光电探测器
材料科学
暗电流
光电流
光电子学
肖特基二极管
肖特基势垒
二极管
作者
Fan Gong,Hehai Fang,Peng Wang,Meng Su,Qing Li,Johnny C. Ho,Xiaoshuang Chen,Wei Lü,Lei Liao,Jun Wang,Weida Hu
出处
期刊:Nanotechnology
[IOP Publishing]
日期:2017-11-09
卷期号:28 (48): 484002-484002
被引量:72
标识
DOI:10.1088/1361-6528/aa9172
摘要
Over the past few years, two-dimensional (2D) nanomaterials, such as MoS2, have been widely considered as the promising channel materials for next-generation high-performance phototransistors. However, their device performances still mostly suffer from slow photoresponse (e.g. with the time constant in the order of milliseconds) due to the relatively long channel length and the substantial surface defect induced carrier trapping, as well as the insufficient detectivity owing to the relatively large dark current. In this work, a simple multilayer MoS2 based photodetector employing vertical Schottky junctions of Au-MoS2-ITO is demonstrated. This unique device structure can significantly suppress the dark current down to 10-12 A and enable the fast photoresponse of 64 μs, together with the stable responsivity of ∼1 A W-1 and the high photocurrent to dark current ratio of ∼106 at room temperature. This vertical-Schottky photodetector can also exhibit a wide detection range from visible to 1000 nm. All these results demonstrate clearly that the vertical Schottky structure is an effective configuration for achieving high-performance optoelectronic devices based on 2D materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI