亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Self-Adaptive Bell–LaPadula Model Based on Model Training With Historical Access Logs

计算机科学 人工智能 过程(计算) 机器学习 对抗制 数据挖掘 操作系统
作者
Zhuo Tang,Xiaofei Ding,Ying Zhong,Li Yang,Keqin Li
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:13 (8): 2047-2061 被引量:20
标识
DOI:10.1109/tifs.2018.2807793
摘要

In currently popular access control models, the security policies and regulations never change in the running system process once they are identified, which makes it possible for attackers to find the vulnerabilities in a system, resulting in the lack of ability to perceive the system security status and risks in a dynamic manner and exposing the system to such risks. By introducing the maximum entropy (MaxENT) models into the rule optimization for the Bell-LaPadula (BLP) model, this paper proposes an improved BLP model with the self-learning function: MaxENT-BLP. This model first formalizes the security properties, system states, transformational rules, and a constraint model based on the states transition of the MaxENT. After handling the historical system access logs as the original data sets, this model extracts the user requests, current states, and decisions to act as the feature vectors. Second, we use k -fold cross validation to divide all vectors into a training set and a testing set. In this paper, the model training process is based on the Broyden-Fletcher-Goldfarb-Shanno algorithm. And this model contains a strategy update algorithm to adjust the access control rules dynamically according to the access and decision records in a system. Third, we prove that MaxENT-BLP is secure through theoretical analysis. By estimating the precision, recall, and F1-score, the experiments show the availability and accuracy of this model. Finally, this paper provides the process of model training based on deep learning and discussions regarding adversarial samples from the malware classifiers. We demonstrate that MaxENT-BLP is an appropriate choice and has the ability to help running information systems to avoid more risks and losses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
ZSN发布了新的文献求助100
25秒前
唐禹嘉完成签到 ,获得积分10
35秒前
yb完成签到,获得积分10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
1分钟前
weibo完成签到,获得积分10
1分钟前
hhr完成签到 ,获得积分10
1分钟前
tj发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
香蕉觅云应助rerorero18采纳,获得10
1分钟前
2分钟前
111发布了新的文献求助10
2分钟前
111完成签到,获得积分20
2分钟前
Libgenxxxx完成签到,获得积分10
2分钟前
2分钟前
AMM应助Jack80采纳,获得80
2分钟前
领导范儿应助今晚喝两杯采纳,获得10
3分钟前
3分钟前
3分钟前
科研通AI2S应助ZSN采纳,获得10
3分钟前
Hunter发布了新的文献求助10
3分钟前
情怀应助Hunter采纳,获得10
3分钟前
3分钟前
sherly完成签到,获得积分20
3分钟前
sherly发布了新的文献求助20
4分钟前
宅心仁厚完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
蜗牛小霸王完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
rerorero18发布了新的文献求助10
5分钟前
5分钟前
脑洞疼应助科研通管家采纳,获得10
5分钟前
唐泽雪穗应助科研通管家采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
可见光通信专用集成电路及实时系统 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4880026
求助须知:如何正确求助?哪些是违规求助? 4166821
关于积分的说明 12927232
捐赠科研通 3925518
什么是DOI,文献DOI怎么找? 2154825
邀请新用户注册赠送积分活动 1172878
关于科研通互助平台的介绍 1076926