A Self-Adaptive Bell–LaPadula Model Based on Model Training With Historical Access Logs

计算机科学 人工智能 过程(计算) 机器学习 对抗制 数据挖掘 操作系统
作者
Zhuo Tang,Xiaofei Ding,Ying Zhong,Li Yang,Keqin Li
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:13 (8): 2047-2061 被引量:20
标识
DOI:10.1109/tifs.2018.2807793
摘要

In currently popular access control models, the security policies and regulations never change in the running system process once they are identified, which makes it possible for attackers to find the vulnerabilities in a system, resulting in the lack of ability to perceive the system security status and risks in a dynamic manner and exposing the system to such risks. By introducing the maximum entropy (MaxENT) models into the rule optimization for the Bell-LaPadula (BLP) model, this paper proposes an improved BLP model with the self-learning function: MaxENT-BLP. This model first formalizes the security properties, system states, transformational rules, and a constraint model based on the states transition of the MaxENT. After handling the historical system access logs as the original data sets, this model extracts the user requests, current states, and decisions to act as the feature vectors. Second, we use k -fold cross validation to divide all vectors into a training set and a testing set. In this paper, the model training process is based on the Broyden-Fletcher-Goldfarb-Shanno algorithm. And this model contains a strategy update algorithm to adjust the access control rules dynamically according to the access and decision records in a system. Third, we prove that MaxENT-BLP is secure through theoretical analysis. By estimating the precision, recall, and F1-score, the experiments show the availability and accuracy of this model. Finally, this paper provides the process of model training based on deep learning and discussions regarding adversarial samples from the malware classifiers. We demonstrate that MaxENT-BLP is an appropriate choice and has the ability to help running information systems to avoid more risks and losses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼的雨琴完成签到 ,获得积分10
1秒前
苦哈哈完成签到,获得积分0
2秒前
2秒前
无花果应助罗大壮采纳,获得10
3秒前
AAAAL完成签到,获得积分10
5秒前
6秒前
欣慰人生完成签到,获得积分20
8秒前
沟通亿心完成签到,获得积分10
8秒前
revew666完成签到,获得积分10
9秒前
晨曦发布了新的文献求助10
9秒前
哦哦完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
梅西完成签到 ,获得积分10
12秒前
12秒前
123完成签到 ,获得积分10
12秒前
大猫不吃鱼完成签到,获得积分10
13秒前
现实的千万完成签到,获得积分10
13秒前
隐形的语海完成签到,获得积分10
13秒前
14秒前
科研人完成签到,获得积分10
14秒前
小公牛完成签到 ,获得积分10
17秒前
罗大壮发布了新的文献求助10
17秒前
栋仔完成签到,获得积分10
18秒前
西格玛完成签到,获得积分10
19秒前
TianFuAI完成签到,获得积分10
19秒前
兔BF完成签到,获得积分10
19秒前
有魅力翠柏完成签到 ,获得积分10
19秒前
爆米花完成签到,获得积分10
19秒前
浮游应助晨曦采纳,获得10
21秒前
行走的绅士完成签到,获得积分10
22秒前
俭朴的帽子完成签到,获得积分10
24秒前
徐先生1106完成签到,获得积分10
24秒前
26秒前
任性铅笔完成签到 ,获得积分10
26秒前
星辰大海应助科研通管家采纳,获得10
26秒前
酷波er应助科研通管家采纳,获得10
26秒前
上官若男应助科研通管家采纳,获得10
26秒前
Owen应助科研通管家采纳,获得10
26秒前
所所应助科研通管家采纳,获得10
26秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450513
求助须知:如何正确求助?哪些是违规求助? 4558247
关于积分的说明 14265829
捐赠科研通 4481797
什么是DOI,文献DOI怎么找? 2454981
邀请新用户注册赠送积分活动 1445752
关于科研通互助平台的介绍 1421882