A Self-Adaptive Bell–LaPadula Model Based on Model Training With Historical Access Logs

计算机科学 人工智能 过程(计算) 机器学习 对抗制 数据挖掘 操作系统
作者
Zhuo Tang,Xiaofei Ding,Ying Zhong,Li Yang,Keqin Li
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:13 (8): 2047-2061 被引量:20
标识
DOI:10.1109/tifs.2018.2807793
摘要

In currently popular access control models, the security policies and regulations never change in the running system process once they are identified, which makes it possible for attackers to find the vulnerabilities in a system, resulting in the lack of ability to perceive the system security status and risks in a dynamic manner and exposing the system to such risks. By introducing the maximum entropy (MaxENT) models into the rule optimization for the Bell-LaPadula (BLP) model, this paper proposes an improved BLP model with the self-learning function: MaxENT-BLP. This model first formalizes the security properties, system states, transformational rules, and a constraint model based on the states transition of the MaxENT. After handling the historical system access logs as the original data sets, this model extracts the user requests, current states, and decisions to act as the feature vectors. Second, we use k -fold cross validation to divide all vectors into a training set and a testing set. In this paper, the model training process is based on the Broyden-Fletcher-Goldfarb-Shanno algorithm. And this model contains a strategy update algorithm to adjust the access control rules dynamically according to the access and decision records in a system. Third, we prove that MaxENT-BLP is secure through theoretical analysis. By estimating the precision, recall, and F1-score, the experiments show the availability and accuracy of this model. Finally, this paper provides the process of model training based on deep learning and discussions regarding adversarial samples from the malware classifiers. We demonstrate that MaxENT-BLP is an appropriate choice and has the ability to help running information systems to avoid more risks and losses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助Joy采纳,获得10
3秒前
qjq完成签到,获得积分20
4秒前
Culto完成签到,获得积分10
4秒前
Hanson完成签到,获得积分10
4秒前
4秒前
6秒前
wh完成签到 ,获得积分10
7秒前
qqq发布了新的文献求助10
7秒前
8秒前
nonetyoe完成签到,获得积分10
9秒前
Doc_W发布了新的文献求助10
9秒前
酷酷画笔发布了新的文献求助30
10秒前
11秒前
田様应助天真红酒采纳,获得10
11秒前
11秒前
小二郎应助DawnySun采纳,获得10
12秒前
糕糕高高发布了新的文献求助20
13秒前
小团子发布了新的文献求助10
13秒前
森花完成签到,获得积分10
13秒前
yaoyu完成签到,获得积分10
14秒前
英俊绿海完成签到 ,获得积分10
14秒前
14秒前
15秒前
默默纲完成签到,获得积分10
15秒前
15秒前
喔啦完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
吴建文完成签到 ,获得积分10
17秒前
17秒前
qiaobaqiao完成签到 ,获得积分10
19秒前
南念发布了新的文献求助10
19秒前
Jasper应助科学家采纳,获得10
20秒前
July发布了新的文献求助100
20秒前
guo发布了新的文献求助10
21秒前
yjq发布了新的文献求助10
21秒前
21秒前
儒雅的菠萝完成签到 ,获得积分10
21秒前
study发布了新的文献求助10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309103
求助须知:如何正确求助?哪些是违规求助? 2942468
关于积分的说明 8508989
捐赠科研通 2617498
什么是DOI,文献DOI怎么找? 1430174
科研通“疑难数据库(出版商)”最低求助积分说明 664072
邀请新用户注册赠送积分活动 649239