A synergy of the sine-cosine algorithm and particle swarm optimizer for improved global optimization and object tracking

粒子群优化 计算机科学 算法 混合算法(约束满足) 数学优化 多群优化 元启发式 水准点(测量) 三角函数 数学 人工智能 约束满足 几何学 大地测量学 概率逻辑 地理 约束逻辑程序设计
作者
Hathiram Nenavath,Dr Ravi Kumar Jatoth,Swagatam Das
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:43: 1-30 被引量:140
标识
DOI:10.1016/j.swevo.2018.02.011
摘要

Due to its simplicity and efficiency, a recently proposed optimization algorithm, Sine Cosine Algorithm (SCA), has gained the interest of researchers from various fields for solving optimization problems. However, it is prone to premature convergence at local minima as it lacks internal memory. To overcome this drawback, a novel Hybrid SCA-PSO algorithm for solving optimization problems and object tracking is proposed. The Pbest and Gbest components of PSO (Particle Swarm Optimization) is added to traditional SCA to guide the search process for potential candidate solutions and PSO is then initialized with Pbest of SCA to exploit the search space further. The proposed algorithm combines the exploitation capability of PSO and exploration capability of SCA to achieve optimal global solutions. The effectiveness of this algorithm is evaluated using 23 classical, CEC 2005 and CEC 2014 benchmark functions. Statistical parameters are employed to observe the efficiency of the Hybrid SCA-PSO qualitatively and results prove that the proposed algorithm is very competitive compared to the state-of-the-art metaheuristic algorithms. The Hybrid SCA-PSO algorithm is applied for object tracking as a real thought-provoking case study. Experimental results show that the Hybrid SCA-PSO-based tracker can robustly track an arbitrary target in various challenging conditions. To reveal the capability of the proposed algorithm, comparative studies of tracking accuracy and speed of the Hybrid SCA-PSO based tracking framework and other trackers, viz., Particle filter, Mean-shift, Particle swarm optimization, Bat algorithm, Sine Cosine Algorithm (SCA) and Hybrid Gravitational Search Algorithm (HGSA) is presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宇宙粉红闪电完成签到,获得积分10
刚刚
cc完成签到,获得积分10
1秒前
lhy1150469792完成签到,获得积分10
1秒前
3秒前
momo完成签到,获得积分10
3秒前
大芳儿发布了新的文献求助10
3秒前
天天快乐应助阿酒采纳,获得10
4秒前
大个应助张悦采纳,获得10
6秒前
lhy1150469792发布了新的文献求助10
6秒前
biu我你开心吗完成签到,获得积分10
7秒前
7秒前
慕青应助Lusteri采纳,获得10
8秒前
小马甲应助科研王采纳,获得10
8秒前
SciGPT应助小灰灰采纳,获得10
9秒前
小心完成签到,获得积分10
9秒前
科研通AI6应助CC采纳,获得30
9秒前
金钱柳完成签到,获得积分10
10秒前
坦率面包完成签到,获得积分10
11秒前
科研通AI6应助Joy采纳,获得10
11秒前
orixero应助qiao采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
玩命的十三完成签到 ,获得积分10
12秒前
12秒前
13秒前
14秒前
Dksido完成签到 ,获得积分20
14秒前
14秒前
张志超发布了新的文献求助10
14秒前
明亮的咖啡豆完成签到,获得积分10
14秒前
淡淡的小老鼠完成签到,获得积分10
14秒前
科研王完成签到,获得积分10
14秒前
现代大米完成签到,获得积分10
15秒前
啦啦啦完成签到,获得积分10
15秒前
16秒前
晚风完成签到,获得积分10
16秒前
16秒前
16秒前
赘婿应助和谐蛋蛋采纳,获得10
16秒前
李爱国应助风趣的黑夜采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646269
求助须知:如何正确求助?哪些是违规求助? 4770756
关于积分的说明 15034169
捐赠科研通 4805036
什么是DOI,文献DOI怎么找? 2569371
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812