Deep learning with convolutional neural networks for EEG decoding and visualization

卷积神经网络 解码方法 计算机科学 可视化 人工智能 规范化(社会学) 模式识别(心理学) 脑电图 深度学习 心理学 机器学习 算法 人类学 精神科 社会学
作者
Robin Tibor Schirrmeister,Jost Tobias Springenberg,Lukas D. J. Fiederer,Martin Glasstetter,Katharina Eggensperger,Michael Tangermann,Frank Hutter,Wolfram Burgard,Tonio Ball
出处
期刊:Human Brain Mapping [Wiley]
卷期号:38 (11): 5391-5420 被引量:2044
标识
DOI:10.1002/hbm.23730
摘要

Abstract Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end‐to‐end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end‐to‐end EEG analysis, but a better understanding of how to design and train ConvNets for end‐to‐end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task‐related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG‐based brain mapping. Hum Brain Mapp 38:5391–5420, 2017 . © 2017 Wiley Periodicals, Inc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助fff采纳,获得10
刚刚
刚刚
刚刚
哈哈发布了新的文献求助10
刚刚
1秒前
英俊的铭应助小竹签采纳,获得10
2秒前
852应助lc采纳,获得10
3秒前
无畏甜桃发布了新的文献求助10
3秒前
yinlaotou完成签到,获得积分10
4秒前
绿地土狗完成签到,获得积分10
4秒前
研友_VZG7GZ应助忘多采纳,获得10
4秒前
晨曦完成签到,获得积分20
4秒前
5秒前
6秒前
别先生发布了新的文献求助10
7秒前
Anna完成签到,获得积分10
8秒前
8秒前
8秒前
Pomelo发布了新的文献求助10
9秒前
10秒前
木子李发布了新的文献求助10
11秒前
小竹签发布了新的文献求助10
11秒前
可爱的函函应助哈哈哈采纳,获得10
12秒前
12秒前
13秒前
13秒前
火星上冰珍完成签到,获得积分10
14秒前
15秒前
lc发布了新的文献求助10
16秒前
fff发布了新的文献求助10
16秒前
华仔应助壮观缘分采纳,获得10
16秒前
17秒前
科研通AI2S应助QQ采纳,获得10
17秒前
牛鑫洁发布了新的文献求助10
18秒前
所所应助leilei采纳,获得10
18秒前
充电宝应助小竹签采纳,获得10
20秒前
22秒前
研友_nvGy2Z发布了新的文献求助10
25秒前
jin完成签到,获得积分10
25秒前
YanXT完成签到,获得积分10
26秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242994
求助须知:如何正确求助?哪些是违规求助? 2887092
关于积分的说明 8246361
捐赠科研通 2555681
什么是DOI,文献DOI怎么找? 1383795
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625631