Deep learning with convolutional neural networks for EEG decoding and visualization

卷积神经网络 解码方法 计算机科学 可视化 人工智能 规范化(社会学) 模式识别(心理学) 脑电图 深度学习 心理学 机器学习 算法 人类学 社会学 精神科
作者
Robin Tibor Schirrmeister,Jost Tobias Springenberg,Lukas D. J. Fiederer,Martin Glasstetter,Katharina Eggensperger,Michael Tangermann,Frank Hutter,Wolfram Burgard,Tonio Ball
出处
期刊:Human Brain Mapping [Wiley]
卷期号:38 (11): 5391-5420 被引量:2457
标识
DOI:10.1002/hbm.23730
摘要

Abstract Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end‐to‐end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end‐to‐end EEG analysis, but a better understanding of how to design and train ConvNets for end‐to‐end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task‐related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG‐based brain mapping. Hum Brain Mapp 38:5391–5420, 2017 . © 2017 Wiley Periodicals, Inc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小苹果完成签到,获得积分10
刚刚
1秒前
林123a发布了新的文献求助10
1秒前
hugo发布了新的文献求助10
3秒前
搜集达人应助璨澄采纳,获得30
3秒前
cosy发布了新的文献求助10
5秒前
qiu完成签到 ,获得积分10
6秒前
longh完成签到,获得积分10
6秒前
852应助凌晨五点的采纳,获得10
6秒前
6秒前
北纬工人完成签到,获得积分10
8秒前
8秒前
林123a完成签到,获得积分10
9秒前
qiu关注了科研通微信公众号
10秒前
11秒前
iNk应助longh采纳,获得20
11秒前
希望天下0贩的0应助jimforu采纳,获得20
12秒前
13秒前
flymove发布了新的文献求助10
14秒前
个性的糖豆完成签到,获得积分10
15秒前
16秒前
执葵完成签到,获得积分20
16秒前
传奇3应助hugo采纳,获得10
17秒前
mmj完成签到 ,获得积分10
17秒前
wys完成签到 ,获得积分10
18秒前
19秒前
20秒前
pluvia完成签到,获得积分10
21秒前
21秒前
执葵发布了新的文献求助20
22秒前
暗号发布了新的文献求助10
23秒前
25秒前
28秒前
31秒前
英姑应助a成采纳,获得10
31秒前
Wsyyy完成签到 ,获得积分10
33秒前
WANGCHU发布了新的文献求助10
34秒前
laity发布了新的文献求助10
35秒前
aa121599发布了新的文献求助10
35秒前
罗翔完成签到,获得积分10
39秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371