神经发生
姜黄素
海马结构
海马体
药理学
脑源性神经营养因子
慢性应激
齿状回
神经科学
神经保护
神经营养因子
内分泌学
抗抑郁药
医学
内科学
心理学
受体
作者
Ying Xu,Bao-Shan Ku,Li Cui,Xuejun Li,Philip A. Barish,Thomas C. Foster,William O. Ogle
标识
DOI:10.1016/j.brainres.2007.05.071
摘要
Curcuma longa is a major constituent of Xiaoyao-san, the traditional Chinese medicine, which has been used to effectively manage stress and depression-related disorders in China. As the active component of curcuma longa, curcumin possesses many therapeutic properties; we have previously described its antidepressant activity in our earlier studies using the chronic unpredictable stress model of depression in rats. Recent studies show that stress-induced damage to hippocampal neurons may contribute to the phathophysiology of depression. The aim of this study was to investigate the effects of curcumin on hippocampal neurogenesis in chronically stressed rats. We used an unpredictable chronic stress paradigm (20 days) to determine whether chronic curcumin treatment with the effective doses for behavioral responses (5, 10 and 20 mg/kg, p.o.), could alleviate or reverse the effects of stress on adult hippocampal neurogenesis. Our results suggested that curcumin administration (10 and 20 mg/kg, p.o.) increased hippocampal neurogenesis in chronically stressed rats, similar to classic antidepressant imipramine treatment (10 mg/kg, i.p.). Our results further demonstrated that these new cells mature and become neurons, as determined by triple labeling for BrdU and neuronal- or glial-specific markers. In addition, curcumin significantly prevented the stress-induced decrease in 5-HT1A mRNA and BDNF protein levels in the hippocampal subfields, two molecules involved in hippocampal neurogenesis. These results raise the possibility that increased cell proliferation and neuronal populations may be a mechanism by which curcumin treatment overcomes the stress-induced behavioral abnormalities and hippocampal neuronal damage. Moreover, curcumin treatment, via up-regulation of 5-HT1A receptors and BDNF, may reverse or protect hippocampal neurons from further damage in response to chronic stress, which may underlie the therapeutic actions of curcumin.
科研通智能强力驱动
Strongly Powered by AbleSci AI