亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Material model for composites using neural networks

人工神经网络 代表(政治) 非线性系统 本构方程 计算机科学 人工智能 有限元法 结构工程 工程类 政治学 量子力学 政治 物理 法学
作者
Ramana M. Pidaparti,Mathew Palakal
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:31 (8): 1533-1535 被引量:47
标识
DOI:10.2514/3.11810
摘要

Introduction A materials such as composites are being used in a variety of engineering applications. These composites exhibit complex behaviors such as anisotropy, microcracking, fiber breakage, etc. Constitutive equations are being developed to describe these complex behaviors using some mathematical rules and expressions based on either experimental data or a theory. The constitutive equations describe the relationship between stresses and strains. A new computational paradigm using Artificial Neural Network provides a fundamentally different approach to the derivation and representation of composite material behavior relationships. Neural network (NN) is a paradigm for computation and knowledge representation inspired by the neuronal architecture and operation of the brain.' There have been considerable research efforts in different applications of NN: signal processing, robotics, structural analysis and design, and pattern recognition' to name a few. Other related work in the use of NN for effective modeling of complex, highly nonlinear relationship among data sets can be found in Ref. 7. The resurgence of earlier research in NN has facilitated the development of a totally different approach to the derivation and representation of material behavior. With this new approach, the knowledge of the material's behavior is captured within the connections of a self-organizing NN that has been trained with experimental data. Recently, the stress-strain behavior of concrete material under the plane stress condition was modeled with a back-propagation (BP) neural network. A neural-network-based material model is developed as an alternative to mathematical modeling of composite material behavior. Neural-network-based modeling solutions are better than conventional methods, such as nonlinear regression analysis, etc., for handling unknown data sets, large dimensional data sets, and noisy data. In this Note, the nonlinear stress-strain behavior of (±6) graphite-epoxy laminates under monotonic and cyclic loadings is modeled with a back-propagation neural network. The NN predicted stress-strain behavior is compared to the experimental data for both monotonic and cyclic loadings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Suc发布了新的文献求助10
8秒前
8秒前
Mars夜愿完成签到,获得积分10
12秒前
tabor发布了新的文献求助10
15秒前
MET1应助阅月采纳,获得10
15秒前
ceeray23应助阅月采纳,获得10
15秒前
打打应助阅月采纳,获得10
15秒前
坚强的秋白完成签到,获得积分10
17秒前
21秒前
边缘人格发布了新的文献求助10
28秒前
乐观的月亮完成签到,获得积分10
31秒前
wanjingwan完成签到 ,获得积分10
45秒前
JamesPei应助科研通管家采纳,获得10
46秒前
ceeray23应助科研通管家采纳,获得10
46秒前
微风打了烊完成签到 ,获得积分10
46秒前
lingo完成签到 ,获得积分10
54秒前
liao完成签到,获得积分0
1分钟前
殷楷霖发布了新的文献求助10
1分钟前
嘿嘿发布了新的文献求助10
1分钟前
1分钟前
陆一完成签到 ,获得积分10
1分钟前
殷楷霖完成签到,获得积分10
1分钟前
杨泽宇发布了新的文献求助10
1分钟前
NLJY完成签到,获得积分10
1分钟前
rrr完成签到 ,获得积分10
1分钟前
犹豫幻丝完成签到,获得积分10
1分钟前
英俊的铭应助CC采纳,获得10
1分钟前
idiom完成签到 ,获得积分10
1分钟前
小黄还你好完成签到 ,获得积分10
1分钟前
无极微光应助恰知采纳,获得20
1分钟前
任尔发布了新的文献求助10
1分钟前
1分钟前
hodi完成签到,获得积分10
1分钟前
CC发布了新的文献求助10
1分钟前
科目三应助边缘人格采纳,获得10
1分钟前
爆米花应助可乐采纳,获得10
1分钟前
朴素寄文发布了新的文献求助10
1分钟前
1分钟前
liao举报wbh求助涉嫌违规
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568155
求助须知:如何正确求助?哪些是违规求助? 4652598
关于积分的说明 14701800
捐赠科研通 4594459
什么是DOI,文献DOI怎么找? 2520964
邀请新用户注册赠送积分活动 1492847
关于科研通互助平台的介绍 1463695