Material model for composites using neural networks

人工神经网络 代表(政治) 非线性系统 本构方程 计算机科学 人工智能 有限元法 结构工程 工程类 物理 量子力学 政治 政治学 法学
作者
Ramana M. Pidaparti,Mathew Palakal
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:31 (8): 1533-1535 被引量:47
标识
DOI:10.2514/3.11810
摘要

Introduction A materials such as composites are being used in a variety of engineering applications. These composites exhibit complex behaviors such as anisotropy, microcracking, fiber breakage, etc. Constitutive equations are being developed to describe these complex behaviors using some mathematical rules and expressions based on either experimental data or a theory. The constitutive equations describe the relationship between stresses and strains. A new computational paradigm using Artificial Neural Network provides a fundamentally different approach to the derivation and representation of composite material behavior relationships. Neural network (NN) is a paradigm for computation and knowledge representation inspired by the neuronal architecture and operation of the brain.' There have been considerable research efforts in different applications of NN: signal processing, robotics, structural analysis and design, and pattern recognition' to name a few. Other related work in the use of NN for effective modeling of complex, highly nonlinear relationship among data sets can be found in Ref. 7. The resurgence of earlier research in NN has facilitated the development of a totally different approach to the derivation and representation of material behavior. With this new approach, the knowledge of the material's behavior is captured within the connections of a self-organizing NN that has been trained with experimental data. Recently, the stress-strain behavior of concrete material under the plane stress condition was modeled with a back-propagation (BP) neural network. A neural-network-based material model is developed as an alternative to mathematical modeling of composite material behavior. Neural-network-based modeling solutions are better than conventional methods, such as nonlinear regression analysis, etc., for handling unknown data sets, large dimensional data sets, and noisy data. In this Note, the nonlinear stress-strain behavior of (±6) graphite-epoxy laminates under monotonic and cyclic loadings is modeled with a back-propagation neural network. The NN predicted stress-strain behavior is compared to the experimental data for both monotonic and cyclic loadings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
biubiu发布了新的文献求助10
1秒前
李点点发布了新的文献求助10
1秒前
赘婿应助Lzk采纳,获得10
1秒前
2秒前
现代雪晴发布了新的文献求助10
5秒前
SciGPT应助钱钱钱采纳,获得10
5秒前
完美天蓝发布了新的文献求助10
6秒前
起风了完成签到,获得积分10
7秒前
飞翔的荷兰人完成签到,获得积分10
7秒前
李点点发布了新的文献求助10
8秒前
9秒前
10秒前
nini发布了新的文献求助10
12秒前
开心的饼干完成签到,获得积分10
13秒前
川上富江完成签到 ,获得积分10
13秒前
rrr发布了新的文献求助10
13秒前
李点点发布了新的文献求助10
15秒前
淡定的思松应助YangTzeePlus采纳,获得10
16秒前
19秒前
20秒前
20秒前
李点点发布了新的文献求助10
23秒前
zain完成签到 ,获得积分10
23秒前
赘婿应助new_vision采纳,获得30
24秒前
26秒前
Frounhofer发布了新的文献求助10
27秒前
张立佳完成签到 ,获得积分10
27秒前
DerArzt发布了新的文献求助10
28秒前
css1997完成签到 ,获得积分10
29秒前
29秒前
29秒前
Lzk完成签到,获得积分10
29秒前
乐乐应助che采纳,获得10
30秒前
李点点发布了新的文献求助10
32秒前
善学以致用应助整齐星月采纳,获得10
34秒前
35秒前
suling完成签到,获得积分10
36秒前
顺风顺水顺财神完成签到 ,获得积分10
36秒前
亿点快乐完成签到 ,获得积分10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3318384
求助须知:如何正确求助?哪些是违规求助? 2949773
关于积分的说明 8548047
捐赠科研通 2626500
什么是DOI,文献DOI怎么找? 1437208
科研通“疑难数据库(出版商)”最低求助积分说明 666193
邀请新用户注册赠送积分活动 652133