Material model for composites using neural networks

人工神经网络 代表(政治) 非线性系统 本构方程 计算机科学 人工智能 有限元法 结构工程 工程类 政治学 量子力学 政治 物理 法学
作者
Ramana M. Pidaparti,Mathew Palakal
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:31 (8): 1533-1535 被引量:47
标识
DOI:10.2514/3.11810
摘要

Introduction A materials such as composites are being used in a variety of engineering applications. These composites exhibit complex behaviors such as anisotropy, microcracking, fiber breakage, etc. Constitutive equations are being developed to describe these complex behaviors using some mathematical rules and expressions based on either experimental data or a theory. The constitutive equations describe the relationship between stresses and strains. A new computational paradigm using Artificial Neural Network provides a fundamentally different approach to the derivation and representation of composite material behavior relationships. Neural network (NN) is a paradigm for computation and knowledge representation inspired by the neuronal architecture and operation of the brain.' There have been considerable research efforts in different applications of NN: signal processing, robotics, structural analysis and design, and pattern recognition' to name a few. Other related work in the use of NN for effective modeling of complex, highly nonlinear relationship among data sets can be found in Ref. 7. The resurgence of earlier research in NN has facilitated the development of a totally different approach to the derivation and representation of material behavior. With this new approach, the knowledge of the material's behavior is captured within the connections of a self-organizing NN that has been trained with experimental data. Recently, the stress-strain behavior of concrete material under the plane stress condition was modeled with a back-propagation (BP) neural network. A neural-network-based material model is developed as an alternative to mathematical modeling of composite material behavior. Neural-network-based modeling solutions are better than conventional methods, such as nonlinear regression analysis, etc., for handling unknown data sets, large dimensional data sets, and noisy data. In this Note, the nonlinear stress-strain behavior of (±6) graphite-epoxy laminates under monotonic and cyclic loadings is modeled with a back-propagation neural network. The NN predicted stress-strain behavior is compared to the experimental data for both monotonic and cyclic loadings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ty完成签到,获得积分10
刚刚
ABBYTHU18发布了新的文献求助10
刚刚
红红酱发布了新的文献求助10
刚刚
刚刚
小竹完成签到,获得积分10
刚刚
感动不二发布了新的文献求助10
1秒前
nancylan应助雨滴音乐采纳,获得10
1秒前
Gino完成签到,获得积分0
1秒前
三水发布了新的文献求助10
2秒前
2秒前
公司账号2发布了新的文献求助10
3秒前
bbbabo完成签到,获得积分10
3秒前
CipherSage应助欧大大采纳,获得10
4秒前
Zhangxinhao发布了新的文献求助10
5秒前
5秒前
bkagyin应助Leeyouyou采纳,获得10
5秒前
青雉完成签到,获得积分10
5秒前
wangxiangqin完成签到,获得积分10
6秒前
小罗萝卜完成签到,获得积分10
6秒前
JamesPei应助阿拉采纳,获得10
6秒前
7秒前
隐形曼青应助carl采纳,获得10
7秒前
wipmzxu发布了新的文献求助10
7秒前
7秒前
7秒前
在水一方应助王荷一采纳,获得10
8秒前
科目三应助lizhaonian采纳,获得10
9秒前
9秒前
小明给小明的求助进行了留言
9秒前
pluto应助Wunier61采纳,获得10
10秒前
279完成签到,获得积分10
10秒前
缥缈襄发布了新的文献求助10
10秒前
pluto应助fcyyc采纳,获得10
10秒前
10秒前
大个应助一一采纳,获得10
10秒前
文静的颖完成签到,获得积分10
10秒前
wangxiangqin发布了新的文献求助10
10秒前
洁净的鹰关注了科研通微信公众号
11秒前
爱学习的椰子完成签到 ,获得积分10
11秒前
邢晓彤完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472789
求助须知:如何正确求助?哪些是违规求助? 4575000
关于积分的说明 14349787
捐赠科研通 4502378
什么是DOI,文献DOI怎么找? 2467070
邀请新用户注册赠送积分活动 1455052
关于科研通互助平台的介绍 1429246