Material model for composites using neural networks

人工神经网络 代表(政治) 非线性系统 本构方程 计算机科学 人工智能 有限元法 结构工程 工程类 政治学 量子力学 政治 物理 法学
作者
Ramana M. Pidaparti,Mathew Palakal
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:31 (8): 1533-1535 被引量:47
标识
DOI:10.2514/3.11810
摘要

Introduction A materials such as composites are being used in a variety of engineering applications. These composites exhibit complex behaviors such as anisotropy, microcracking, fiber breakage, etc. Constitutive equations are being developed to describe these complex behaviors using some mathematical rules and expressions based on either experimental data or a theory. The constitutive equations describe the relationship between stresses and strains. A new computational paradigm using Artificial Neural Network provides a fundamentally different approach to the derivation and representation of composite material behavior relationships. Neural network (NN) is a paradigm for computation and knowledge representation inspired by the neuronal architecture and operation of the brain.' There have been considerable research efforts in different applications of NN: signal processing, robotics, structural analysis and design, and pattern recognition' to name a few. Other related work in the use of NN for effective modeling of complex, highly nonlinear relationship among data sets can be found in Ref. 7. The resurgence of earlier research in NN has facilitated the development of a totally different approach to the derivation and representation of material behavior. With this new approach, the knowledge of the material's behavior is captured within the connections of a self-organizing NN that has been trained with experimental data. Recently, the stress-strain behavior of concrete material under the plane stress condition was modeled with a back-propagation (BP) neural network. A neural-network-based material model is developed as an alternative to mathematical modeling of composite material behavior. Neural-network-based modeling solutions are better than conventional methods, such as nonlinear regression analysis, etc., for handling unknown data sets, large dimensional data sets, and noisy data. In this Note, the nonlinear stress-strain behavior of (±6) graphite-epoxy laminates under monotonic and cyclic loadings is modeled with a back-propagation neural network. The NN predicted stress-strain behavior is compared to the experimental data for both monotonic and cyclic loadings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小何完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
SamYUkee发布了新的文献求助10
3秒前
sky完成签到,获得积分10
5秒前
Gulu_完成签到 ,获得积分10
5秒前
lily完成签到 ,获得积分10
6秒前
CipherSage应助petranko采纳,获得10
6秒前
安详可燕发布了新的文献求助10
7秒前
q792309106发布了新的文献求助10
8秒前
Ting完成签到 ,获得积分10
8秒前
酷波er应助默默南晴采纳,获得10
8秒前
肉肉应助芒琪采纳,获得10
9秒前
10秒前
10秒前
sketch完成签到,获得积分10
10秒前
xiaohuhuan完成签到,获得积分10
10秒前
11秒前
bella完成签到,获得积分10
11秒前
SYLH应助地狱跳跳虎采纳,获得10
11秒前
邓希静完成签到,获得积分10
11秒前
丘比特应助地狱跳跳虎采纳,获得10
11秒前
11秒前
floating完成签到,获得积分10
11秒前
12秒前
小小媛完成签到,获得积分20
12秒前
童谣发布了新的文献求助10
12秒前
隐形曼青应助cc采纳,获得10
13秒前
13秒前
dudu发布了新的文献求助10
13秒前
cc完成签到 ,获得积分10
13秒前
13秒前
执着春天发布了新的文献求助10
14秒前
桐桐应助Hina采纳,获得10
14秒前
yu发布了新的文献求助10
15秒前
zzz完成签到,获得积分10
15秒前
nike完成签到,获得积分10
15秒前
小知了发布了新的文献求助10
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953623
求助须知:如何正确求助?哪些是违规求助? 3499390
关于积分的说明 11095224
捐赠科研通 3229945
什么是DOI,文献DOI怎么找? 1785807
邀请新用户注册赠送积分活动 869573
科研通“疑难数据库(出版商)”最低求助积分说明 801479