亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Material model for composites using neural networks

人工神经网络 代表(政治) 非线性系统 本构方程 计算机科学 人工智能 有限元法 结构工程 工程类 政治学 量子力学 政治 物理 法学
作者
Ramana M. Pidaparti,Mathew Palakal
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:31 (8): 1533-1535 被引量:47
标识
DOI:10.2514/3.11810
摘要

Introduction A materials such as composites are being used in a variety of engineering applications. These composites exhibit complex behaviors such as anisotropy, microcracking, fiber breakage, etc. Constitutive equations are being developed to describe these complex behaviors using some mathematical rules and expressions based on either experimental data or a theory. The constitutive equations describe the relationship between stresses and strains. A new computational paradigm using Artificial Neural Network provides a fundamentally different approach to the derivation and representation of composite material behavior relationships. Neural network (NN) is a paradigm for computation and knowledge representation inspired by the neuronal architecture and operation of the brain.' There have been considerable research efforts in different applications of NN: signal processing, robotics, structural analysis and design, and pattern recognition' to name a few. Other related work in the use of NN for effective modeling of complex, highly nonlinear relationship among data sets can be found in Ref. 7. The resurgence of earlier research in NN has facilitated the development of a totally different approach to the derivation and representation of material behavior. With this new approach, the knowledge of the material's behavior is captured within the connections of a self-organizing NN that has been trained with experimental data. Recently, the stress-strain behavior of concrete material under the plane stress condition was modeled with a back-propagation (BP) neural network. A neural-network-based material model is developed as an alternative to mathematical modeling of composite material behavior. Neural-network-based modeling solutions are better than conventional methods, such as nonlinear regression analysis, etc., for handling unknown data sets, large dimensional data sets, and noisy data. In this Note, the nonlinear stress-strain behavior of (±6) graphite-epoxy laminates under monotonic and cyclic loadings is modeled with a back-propagation neural network. The NN predicted stress-strain behavior is compared to the experimental data for both monotonic and cyclic loadings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让菠萝完成签到 ,获得积分10
1秒前
3秒前
decade发布了新的文献求助10
3秒前
26秒前
小田完成签到 ,获得积分10
27秒前
Criminology34应助科研通管家采纳,获得30
29秒前
共享精神应助科研通管家采纳,获得20
29秒前
搜集达人应助科研通管家采纳,获得10
29秒前
Criminology34应助科研通管家采纳,获得10
29秒前
31秒前
34秒前
LALA发布了新的文献求助10
36秒前
爱航哥多久了完成签到 ,获得积分10
37秒前
桐桐应助LALA采纳,获得10
44秒前
黑翅鸢完成签到 ,获得积分10
50秒前
明轩完成签到,获得积分10
54秒前
57秒前
lllyq发布了新的文献求助10
1分钟前
星辰大海应助李博士采纳,获得10
1分钟前
李健的小迷弟应助ChenGY采纳,获得20
1分钟前
1分钟前
1分钟前
李博士发布了新的文献求助10
1分钟前
光合作用完成签到,获得积分10
1分钟前
1分钟前
newplayer完成签到,获得积分10
1分钟前
nic关注了科研通微信公众号
1分钟前
一只呆呆完成签到,获得积分10
1分钟前
务实书包完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ChenGY发布了新的文献求助20
1分钟前
1分钟前
1分钟前
yj完成签到,获得积分10
1分钟前
ChenGY发布了新的文献求助10
1分钟前
lly发布了新的文献求助10
1分钟前
一只呆呆发布了新的文献求助10
1分钟前
1分钟前
decade发布了新的文献求助10
1分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454784
求助须知:如何正确求助?哪些是违规求助? 4562164
关于积分的说明 14284810
捐赠科研通 4485976
什么是DOI,文献DOI怎么找? 2457164
邀请新用户注册赠送积分活动 1447790
关于科研通互助平台的介绍 1422988