Material model for composites using neural networks

人工神经网络 代表(政治) 非线性系统 本构方程 计算机科学 人工智能 有限元法 结构工程 工程类 政治学 量子力学 政治 物理 法学
作者
Ramana M. Pidaparti,Mathew Palakal
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:31 (8): 1533-1535 被引量:47
标识
DOI:10.2514/3.11810
摘要

Introduction A materials such as composites are being used in a variety of engineering applications. These composites exhibit complex behaviors such as anisotropy, microcracking, fiber breakage, etc. Constitutive equations are being developed to describe these complex behaviors using some mathematical rules and expressions based on either experimental data or a theory. The constitutive equations describe the relationship between stresses and strains. A new computational paradigm using Artificial Neural Network provides a fundamentally different approach to the derivation and representation of composite material behavior relationships. Neural network (NN) is a paradigm for computation and knowledge representation inspired by the neuronal architecture and operation of the brain.' There have been considerable research efforts in different applications of NN: signal processing, robotics, structural analysis and design, and pattern recognition' to name a few. Other related work in the use of NN for effective modeling of complex, highly nonlinear relationship among data sets can be found in Ref. 7. The resurgence of earlier research in NN has facilitated the development of a totally different approach to the derivation and representation of material behavior. With this new approach, the knowledge of the material's behavior is captured within the connections of a self-organizing NN that has been trained with experimental data. Recently, the stress-strain behavior of concrete material under the plane stress condition was modeled with a back-propagation (BP) neural network. A neural-network-based material model is developed as an alternative to mathematical modeling of composite material behavior. Neural-network-based modeling solutions are better than conventional methods, such as nonlinear regression analysis, etc., for handling unknown data sets, large dimensional data sets, and noisy data. In this Note, the nonlinear stress-strain behavior of (±6) graphite-epoxy laminates under monotonic and cyclic loadings is modeled with a back-propagation neural network. The NN predicted stress-strain behavior is compared to the experimental data for both monotonic and cyclic loadings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助星期一采纳,获得10
刚刚
1秒前
1秒前
燕真完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助50
1秒前
2秒前
二十三号发布了新的文献求助10
2秒前
酷酷问夏发布了新的文献求助10
3秒前
可爱的函函应助脆脆鲨采纳,获得10
3秒前
4秒前
韩晚渔发布了新的文献求助10
6秒前
怡然凌柏发布了新的文献求助10
7秒前
515完成签到,获得积分10
7秒前
张振发布了新的文献求助30
8秒前
端庄擎发布了新的文献求助10
8秒前
Delia完成签到 ,获得积分10
8秒前
善学以致用应助Colin采纳,获得10
9秒前
9秒前
shuilu关注了科研通微信公众号
9秒前
张振宇完成签到 ,获得积分10
10秒前
12秒前
12秒前
13秒前
13秒前
14秒前
15秒前
15秒前
量子星尘发布了新的文献求助50
16秒前
科研通AI6应助阿伟采纳,获得10
16秒前
彦卿发布了新的文献求助10
16秒前
刘旦生完成签到,获得积分10
16秒前
无限发布了新的文献求助50
17秒前
01完成签到 ,获得积分10
17秒前
kkny发布了新的文献求助100
17秒前
17秒前
17秒前
17秒前
17秒前
所所应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123961
求助须知:如何正确求助?哪些是违规求助? 4328299
关于积分的说明 13487058
捐赠科研通 4162704
什么是DOI,文献DOI怎么找? 2281736
邀请新用户注册赠送积分活动 1283059
关于科研通互助平台的介绍 1222170