黑曲霉
菌丝体
孢子
生物反应器
化学
食品科学
菌丝
酶
生物化学
生物
微生物学
植物
有机化学
作者
Habib Driouch,Becky Sommer,Christoph Wittmann
摘要
Abstract Supplementation with silicate microparticles was used as novel approach to control the morphological development of Aspergillus niger , important as the major world source of citric acid and higher‐value enzymes, in submerged culture. With careful variation of size and concentration of the micromaterial added, a number of distinct morphological forms including pellets of different size, free dispersed mycelium, and short hyphae fragments could be reproducibly created. Aluminum oxide particles similarly affected morphology, showing that this effect is largely independent of the chemical particle composition. Image analysis of morphological development of A. niger during the cultivation process showed that the microparticles influence the morphology by collision‐induced disruption of conidia aggregates and probably also the hindrance of new spore–spore interactions in the very early stage of the process. Exemplified for different recombinant A. niger strains enzyme production could be strongly enhanced by the addition of microparticles. Linked to the formation of freely dispersed mycelium, titers for glucoamylase (GA) expressed as intracellular enzyme (88 U/mL) and fructofuranosidase secreted into the supernatant (77 U/mL), were up to fourfold higher in shake flasks. Moreover, accumulation of the undesired by‐product oxalate was suppressed by up to 90%. The microparticle strategy could be successfully transferred to fructofuranosidase production in bioreactor, where a final titer of 160 U/mL could be reached. Using co‐expression of GA with green fluorescent protein, enzyme production was localized in the cellular aggregates of A. niger . For pelleted growth, protein production was maximal only within a thin layer at the pellet surface and markedly decreased in the pellet interior, whereas the interaction with the microparticles created a highly active biocatalyst with the dominant fraction of cells contributing to production. Biotechnol. Bioeng. 2010;105: 1058–1068. © 2009 Wiley Periodicals, Inc.
科研通智能强力驱动
Strongly Powered by AbleSci AI