蛋白质稳态
线粒体呼吸链
呼吸链
生物
线粒体
细胞生物学
呼吸系统
骨骼肌
内分泌学
解剖
作者
Şükrü Anıl Doğan,Claire Pujol,Priyanka Maiti,Alexandra Kukat,Shuaiyu Wang,Steffen Hermans,Katharina Senft,Rolf Wibom,Elena I. Rugarli,Aleksandra Trifunović
标识
DOI:10.1016/j.cmet.2014.02.004
摘要
Adaptive stress responses activated upon mitochondrial dysfunction are assumed to arise in order to counteract respiratory chain deficiency. Here, we demonstrate that loss of DARS2 (mitochondrial aspartyl-tRNA synthetase) leads to the activation of various stress responses in a tissue-specific manner independently of respiratory chain deficiency. DARS2 depletion in heart and skeletal muscle leads to the severe deregulation of mitochondrial protein synthesis followed by a strong respiratory chain deficit in both tissues, yet the activation of adaptive responses is observed predominantly in cardiomyocytes. We show that the impairment of mitochondrial proteostasis in the heart activates the expression of mitokine FGF21, which acts as a signal for cell-autonomous and systemic metabolic changes. Conversely, skeletal muscle has an intrinsic mechanism relying on the slow turnover of mitochondrial transcripts and higher proteostatic buffering capacity. Our results show that mitochondrial dysfunction is sensed independently of respiratory chain deficiency, questioning the current view on the role of stress responses in mitochondrial diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI