In this paper, novel in-plane acoustic reflectors are proposed to enhance the quality factor (Q) in lateral-mode micromachined resonators. Finite element coupled-domain simulation is used to model anchor loss and to estimate the relative change in the resonator's performance without and with the inclusion of acoustic reflectors. Several 27 and 110 MHz AlN-on-silicon resonators are fabricated and measured to validate the theoretical and simulated data. An average Q enhancement of up to 560% is reported for specific designs with reflectors over the same resonators without reflectors. The measured results trend well with the simulated data and support that the acoustic reflectors can reduce the overall anchor loss with minimum modification in the resonator design.