Recent Advances in Fatigue Crack Growth

裂缝闭合 材料科学 巴黎法 裂纹扩展阻力曲线 应力集中 强度因子 结构工程 可塑性 裂纹尖端张开位移 疲劳试验 断裂力学 复合材料 工程类
作者
A.J. McEvily
出处
期刊:Key Engineering Materials 卷期号:510-511: 15-21 被引量:3
标识
DOI:10.4028/www.scientific.net/kem.510-511.15
摘要

Many of the recent advances in the understanding of the fatigue crack growth process have resulted from an improved realization of the importance of fatigue crack closure in the crack growth process. Two basic crack closure processes have been identified. One of which is known as plasticity-induced fatigue crack closure (PIFCC), and the other is roughness-induced fatigue crack closure (RIFCC). Both forms occur in all alloys, but PIFCC is a surface-related process which is dominant in aluminum alloys such as 2024-T3, whereas RIFCC is dominant in most steels and titanium alloys. A proposed basic equation governing fatigue crack growth is (1) where where Kmax is the maximum stress intensity factor in a loading cycle and Kop is the stress intensity factor at the crack opening level. is the range of the stress intensity factor at the threshold level which is taken to correspond to a crack growth rate of 10-11 m/cycle. The material constant A has units of (MPa)-2, and therefore Eq. 1 is dimensionally correct. Eq.1 has been successfully used in the analysis of both long and short cracks, but in the latter case modification is needed to account for elastic-plastic behavior, the development of crack closure, and the Kitagawa effect which shows that the fatigue strength rather than the threshold level is the controlling factor determining the rate of fatigue crack growth in the very short fatigue crack growth range. Eq. 1 is used to show that The non-propagating cracks observed by Frost and Dugdale resulted from crack closure. The behavior of cracks as short as 10 microns in length can be predicted. Fatigue notch sensitivity is related to crack closure. Very high cycle fatigue (VHCF) behavior is also associated with fatigue crack closure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俟天晴完成签到,获得积分10
2秒前
Orange应助菠萝派采纳,获得10
2秒前
2秒前
茶底发布了新的文献求助10
3秒前
4秒前
5秒前
Zeling完成签到,获得积分10
5秒前
123完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
Catherine完成签到,获得积分20
6秒前
田様应助Gary采纳,获得10
6秒前
张豪杰发布了新的文献求助10
6秒前
陈小宇kk完成签到,获得积分10
6秒前
张航完成签到,获得积分10
7秒前
7秒前
7秒前
葛辉辉发布了新的文献求助20
7秒前
8秒前
littleJ完成签到,获得积分10
8秒前
乐乐应助nickel采纳,获得10
8秒前
俏皮听寒发布了新的文献求助10
9秒前
贺豪发布了新的文献求助30
9秒前
科研通AI2S应助过昭关采纳,获得10
10秒前
11秒前
cc完成签到,获得积分10
12秒前
别凡发布了新的文献求助10
12秒前
13秒前
嘻嘻完成签到 ,获得积分10
13秒前
隐形曼青应助沐兮采纳,获得10
13秒前
小人物完成签到 ,获得积分10
13秒前
14秒前
菠萝派发布了新的文献求助10
14秒前
枫枫829发布了新的文献求助10
14秒前
大白发布了新的文献求助20
16秒前
liuxin发布了新的文献求助30
16秒前
葛辉辉发布了新的文献求助10
17秒前
唐唐完成签到 ,获得积分10
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159555
求助须知:如何正确求助?哪些是违规求助? 2810543
关于积分的说明 7888660
捐赠科研通 2469574
什么是DOI,文献DOI怎么找? 1314953
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012