已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Recent Advances in Fatigue Crack Growth

裂缝闭合 材料科学 巴黎法 裂纹扩展阻力曲线 应力集中 强度因子 结构工程 可塑性 裂纹尖端张开位移 疲劳试验 断裂力学 复合材料 工程类
作者
A.J. McEvily
出处
期刊:Key Engineering Materials 卷期号:510-511: 15-21 被引量:3
标识
DOI:10.4028/www.scientific.net/kem.510-511.15
摘要

Many of the recent advances in the understanding of the fatigue crack growth process have resulted from an improved realization of the importance of fatigue crack closure in the crack growth process. Two basic crack closure processes have been identified. One of which is known as plasticity-induced fatigue crack closure (PIFCC), and the other is roughness-induced fatigue crack closure (RIFCC). Both forms occur in all alloys, but PIFCC is a surface-related process which is dominant in aluminum alloys such as 2024-T3, whereas RIFCC is dominant in most steels and titanium alloys. A proposed basic equation governing fatigue crack growth is (1) where where Kmax is the maximum stress intensity factor in a loading cycle and Kop is the stress intensity factor at the crack opening level. is the range of the stress intensity factor at the threshold level which is taken to correspond to a crack growth rate of 10-11 m/cycle. The material constant A has units of (MPa)-2, and therefore Eq. 1 is dimensionally correct. Eq.1 has been successfully used in the analysis of both long and short cracks, but in the latter case modification is needed to account for elastic-plastic behavior, the development of crack closure, and the Kitagawa effect which shows that the fatigue strength rather than the threshold level is the controlling factor determining the rate of fatigue crack growth in the very short fatigue crack growth range. Eq. 1 is used to show that The non-propagating cracks observed by Frost and Dugdale resulted from crack closure. The behavior of cracks as short as 10 microns in length can be predicted. Fatigue notch sensitivity is related to crack closure. Very high cycle fatigue (VHCF) behavior is also associated with fatigue crack closure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
3秒前
隐形曼青应助Anthonyp采纳,获得10
4秒前
4秒前
5秒前
FashionBoy应助hxjnx采纳,获得10
5秒前
Twinkle发布了新的文献求助10
6秒前
wanci应助mermaid采纳,获得10
6秒前
tbc发布了新的文献求助30
6秒前
7秒前
汉堡包应助wu采纳,获得30
9秒前
千枫茂榕发布了新的文献求助10
10秒前
晓晓鹤发布了新的文献求助10
10秒前
Smith发布了新的文献求助10
11秒前
潇洒的访冬完成签到,获得积分10
11秒前
YYYhl发布了新的文献求助10
11秒前
孤标傲世完成签到 ,获得积分10
12秒前
12秒前
七慕凉完成签到,获得积分0
13秒前
13秒前
13秒前
14秒前
14秒前
丹丹完成签到 ,获得积分10
15秒前
花笙米发布了新的文献求助10
15秒前
17秒前
大胆的音响完成签到 ,获得积分10
17秒前
鱼鱼完成签到 ,获得积分10
17秒前
武英俊发布了新的文献求助10
18秒前
18秒前
ding应助研团团采纳,获得10
18秒前
19秒前
风语者发布了新的文献求助10
19秒前
wu发布了新的文献求助30
22秒前
激动的寻凝完成签到,获得积分10
22秒前
桀桀桀发布了新的文献求助10
22秒前
酷酷的大米完成签到,获得积分10
23秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627406
求助须知:如何正确求助?哪些是违规求助? 4713679
关于积分的说明 14962084
捐赠科研通 4784593
什么是DOI,文献DOI怎么找? 2554835
邀请新用户注册赠送积分活动 1516330
关于科研通互助平台的介绍 1476693