Recent Advances in Fatigue Crack Growth

裂缝闭合 材料科学 巴黎法 裂纹扩展阻力曲线 应力集中 强度因子 结构工程 可塑性 裂纹尖端张开位移 疲劳试验 断裂力学 复合材料 工程类
作者
A.J. McEvily
出处
期刊:Key Engineering Materials 卷期号:510-511: 15-21 被引量:3
标识
DOI:10.4028/www.scientific.net/kem.510-511.15
摘要

Many of the recent advances in the understanding of the fatigue crack growth process have resulted from an improved realization of the importance of fatigue crack closure in the crack growth process. Two basic crack closure processes have been identified. One of which is known as plasticity-induced fatigue crack closure (PIFCC), and the other is roughness-induced fatigue crack closure (RIFCC). Both forms occur in all alloys, but PIFCC is a surface-related process which is dominant in aluminum alloys such as 2024-T3, whereas RIFCC is dominant in most steels and titanium alloys. A proposed basic equation governing fatigue crack growth is (1) where where Kmax is the maximum stress intensity factor in a loading cycle and Kop is the stress intensity factor at the crack opening level. is the range of the stress intensity factor at the threshold level which is taken to correspond to a crack growth rate of 10-11 m/cycle. The material constant A has units of (MPa)-2, and therefore Eq. 1 is dimensionally correct. Eq.1 has been successfully used in the analysis of both long and short cracks, but in the latter case modification is needed to account for elastic-plastic behavior, the development of crack closure, and the Kitagawa effect which shows that the fatigue strength rather than the threshold level is the controlling factor determining the rate of fatigue crack growth in the very short fatigue crack growth range. Eq. 1 is used to show that The non-propagating cracks observed by Frost and Dugdale resulted from crack closure. The behavior of cracks as short as 10 microns in length can be predicted. Fatigue notch sensitivity is related to crack closure. Very high cycle fatigue (VHCF) behavior is also associated with fatigue crack closure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
张中山发布了新的文献求助10
1秒前
小马甲应助nine2652采纳,获得10
1秒前
orixero应助Yinan采纳,获得30
3秒前
JamesPei应助qq采纳,获得10
3秒前
Orange应助tjcu采纳,获得10
3秒前
null发布了新的文献求助10
3秒前
小房子发布了新的文献求助10
4秒前
完美的寄翠完成签到 ,获得积分10
4秒前
Neo完成签到,获得积分10
5秒前
终梦应助一二采纳,获得20
5秒前
13633501455完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
8秒前
Ethan完成签到 ,获得积分10
9秒前
科研通AI6应助鉨汏闫采纳,获得10
9秒前
1chen完成签到 ,获得积分10
9秒前
Qiaoqiao完成签到,获得积分10
10秒前
10秒前
XiaTong完成签到 ,获得积分10
10秒前
艾妮吗完成签到,获得积分10
10秒前
FashionBoy应助张中山采纳,获得20
12秒前
12秒前
13秒前
Lenny发布了新的文献求助10
13秒前
13秒前
研途顺利发布了新的文献求助10
14秒前
allanqiao发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
喵姐完成签到,获得积分10
14秒前
英俊的铭应助hahaha采纳,获得10
16秒前
Yinan发布了新的文献求助30
16秒前
zjq完成签到,获得积分10
16秒前
失眠的夜完成签到,获得积分10
16秒前
阿琪完成签到,获得积分10
16秒前
Ethan关注了科研通微信公众号
17秒前
Twilight发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419305
求助须知:如何正确求助?哪些是违规求助? 4534635
关于积分的说明 14145936
捐赠科研通 4451213
什么是DOI,文献DOI怎么找? 2441631
邀请新用户注册赠送积分活动 1433223
关于科研通互助平台的介绍 1410533