Recent Advances in Fatigue Crack Growth

裂缝闭合 材料科学 巴黎法 裂纹扩展阻力曲线 应力集中 强度因子 结构工程 可塑性 裂纹尖端张开位移 疲劳试验 断裂力学 复合材料 工程类
作者
A.J. McEvily
出处
期刊:Key Engineering Materials 卷期号:510-511: 15-21 被引量:3
标识
DOI:10.4028/www.scientific.net/kem.510-511.15
摘要

Many of the recent advances in the understanding of the fatigue crack growth process have resulted from an improved realization of the importance of fatigue crack closure in the crack growth process. Two basic crack closure processes have been identified. One of which is known as plasticity-induced fatigue crack closure (PIFCC), and the other is roughness-induced fatigue crack closure (RIFCC). Both forms occur in all alloys, but PIFCC is a surface-related process which is dominant in aluminum alloys such as 2024-T3, whereas RIFCC is dominant in most steels and titanium alloys. A proposed basic equation governing fatigue crack growth is (1) where where Kmax is the maximum stress intensity factor in a loading cycle and Kop is the stress intensity factor at the crack opening level. is the range of the stress intensity factor at the threshold level which is taken to correspond to a crack growth rate of 10-11 m/cycle. The material constant A has units of (MPa)-2, and therefore Eq. 1 is dimensionally correct. Eq.1 has been successfully used in the analysis of both long and short cracks, but in the latter case modification is needed to account for elastic-plastic behavior, the development of crack closure, and the Kitagawa effect which shows that the fatigue strength rather than the threshold level is the controlling factor determining the rate of fatigue crack growth in the very short fatigue crack growth range. Eq. 1 is used to show that The non-propagating cracks observed by Frost and Dugdale resulted from crack closure. The behavior of cracks as short as 10 microns in length can be predicted. Fatigue notch sensitivity is related to crack closure. Very high cycle fatigue (VHCF) behavior is also associated with fatigue crack closure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WXR完成签到,获得积分10
1秒前
4秒前
Yoli发布了新的文献求助30
8秒前
馆长应助HCT采纳,获得10
12秒前
凶狠的寄风完成签到 ,获得积分10
12秒前
坚强的之双完成签到,获得积分20
12秒前
doclarrin完成签到 ,获得积分10
13秒前
Orange应助坚强的之双采纳,获得10
15秒前
胡楠完成签到,获得积分10
15秒前
娟娟完成签到 ,获得积分10
17秒前
gladuhere完成签到 ,获得积分10
18秒前
王宣龙发布了新的文献求助40
18秒前
研友_VZG7GZ应助踏实的12采纳,获得10
22秒前
JG完成签到 ,获得积分10
23秒前
Jaden完成签到,获得积分10
25秒前
ZZzz完成签到 ,获得积分10
26秒前
博弈完成签到 ,获得积分10
32秒前
34秒前
ilk666完成签到,获得积分10
37秒前
大气夜山完成签到 ,获得积分10
38秒前
caohuijun发布了新的文献求助10
38秒前
逢场作戱__完成签到 ,获得积分10
38秒前
努力学习ing完成签到 ,获得积分10
40秒前
WangJL完成签到 ,获得积分10
41秒前
温暖完成签到 ,获得积分10
42秒前
HCT完成签到,获得积分10
43秒前
丽莉完成签到,获得积分20
44秒前
小巧的语儿完成签到 ,获得积分10
46秒前
蒸馏水完成签到,获得积分10
47秒前
tong完成签到,获得积分10
49秒前
leaolf完成签到,获得积分0
51秒前
许晴完成签到 ,获得积分10
53秒前
笑点低的项链完成签到 ,获得积分10
56秒前
Dong完成签到 ,获得积分10
56秒前
猕猴桃完成签到 ,获得积分10
58秒前
兔兔完成签到 ,获得积分10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
脑洞疼应助Tinadai123456采纳,获得10
1分钟前
豆豆完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570320
求助须知:如何正确求助?哪些是违规求助? 3991993
关于积分的说明 12356573
捐赠科研通 3664572
什么是DOI,文献DOI怎么找? 2019606
邀请新用户注册赠送积分活动 1054071
科研通“疑难数据库(出版商)”最低求助积分说明 941622