清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Recent Advances in Fatigue Crack Growth

裂缝闭合 材料科学 巴黎法 裂纹扩展阻力曲线 应力集中 强度因子 结构工程 可塑性 裂纹尖端张开位移 疲劳试验 断裂力学 复合材料 工程类
作者
A.J. McEvily
出处
期刊:Key Engineering Materials 卷期号:510-511: 15-21 被引量:3
标识
DOI:10.4028/www.scientific.net/kem.510-511.15
摘要

Many of the recent advances in the understanding of the fatigue crack growth process have resulted from an improved realization of the importance of fatigue crack closure in the crack growth process. Two basic crack closure processes have been identified. One of which is known as plasticity-induced fatigue crack closure (PIFCC), and the other is roughness-induced fatigue crack closure (RIFCC). Both forms occur in all alloys, but PIFCC is a surface-related process which is dominant in aluminum alloys such as 2024-T3, whereas RIFCC is dominant in most steels and titanium alloys. A proposed basic equation governing fatigue crack growth is (1) where where Kmax is the maximum stress intensity factor in a loading cycle and Kop is the stress intensity factor at the crack opening level. is the range of the stress intensity factor at the threshold level which is taken to correspond to a crack growth rate of 10-11 m/cycle. The material constant A has units of (MPa)-2, and therefore Eq. 1 is dimensionally correct. Eq.1 has been successfully used in the analysis of both long and short cracks, but in the latter case modification is needed to account for elastic-plastic behavior, the development of crack closure, and the Kitagawa effect which shows that the fatigue strength rather than the threshold level is the controlling factor determining the rate of fatigue crack growth in the very short fatigue crack growth range. Eq. 1 is used to show that The non-propagating cracks observed by Frost and Dugdale resulted from crack closure. The behavior of cracks as short as 10 microns in length can be predicted. Fatigue notch sensitivity is related to crack closure. Very high cycle fatigue (VHCF) behavior is also associated with fatigue crack closure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mochalv123完成签到 ,获得积分10
2秒前
24秒前
萝卜猪完成签到,获得积分10
29秒前
59秒前
wlscj应助科研通管家采纳,获得20
1分钟前
wlscj应助科研通管家采纳,获得20
1分钟前
Yini应助科研通管家采纳,获得20
1分钟前
jlwang完成签到,获得积分10
1分钟前
Ray完成签到 ,获得积分10
1分钟前
1437594843完成签到 ,获得积分10
1分钟前
1分钟前
土拨鼠完成签到 ,获得积分10
1分钟前
1分钟前
Orange应助蛋蛋姐姐采纳,获得10
1分钟前
朔月发布了新的文献求助10
2分钟前
Lillianzhu1完成签到,获得积分10
2分钟前
端庄洪纲完成签到 ,获得积分10
2分钟前
今后应助scxl2000采纳,获得10
2分钟前
2分钟前
scxl2000发布了新的文献求助10
3分钟前
Yini应助科研通管家采纳,获得150
3分钟前
可爱沛蓝完成签到 ,获得积分10
3分钟前
沉沉完成签到 ,获得积分0
3分钟前
orixero应助西西娃儿采纳,获得10
3分钟前
scxl2000完成签到 ,获得积分10
3分钟前
Certainty橙子完成签到 ,获得积分10
4分钟前
我有我风格完成签到 ,获得积分10
4分钟前
Alvin完成签到 ,获得积分10
4分钟前
4分钟前
西西娃儿发布了新的文献求助10
4分钟前
creep2020完成签到,获得积分10
5分钟前
wlscj应助科研通管家采纳,获得20
5分钟前
尊敬火完成签到 ,获得积分10
5分钟前
毛毛完成签到,获得积分10
5分钟前
zbb123完成签到 ,获得积分10
5分钟前
5分钟前
蛋蛋姐姐发布了新的文献求助10
5分钟前
神勇的天问完成签到 ,获得积分10
6分钟前
hani完成签到,获得积分10
7分钟前
wlscj应助科研通管家采纳,获得20
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293260
求助须知:如何正确求助?哪些是违规求助? 4443492
关于积分的说明 13831222
捐赠科研通 4327114
什么是DOI,文献DOI怎么找? 2375286
邀请新用户注册赠送积分活动 1370634
关于科研通互助平台的介绍 1335362