Cellular mechanisms of insulin resistance

胰岛素抵抗 胰岛素 抗性(生态学) 生物 医学 生物信息学 计算生物学 内分泌学 生态学
作者
Gerald I. Shulman
出处
期刊:Journal of Clinical Investigation [American Society for Clinical Investigation]
卷期号:106 (2): 171-176 被引量:2671
标识
DOI:10.1172/jci10583
摘要

It is estimated that by the year 2020 there will be approximately 250 million people affected by type 2 diabetes mellitus worldwide (1). Although the primary factors causing this disease are unknown, it is clear that insulin resistance plays a major role in its development. Evidence for this comes from (a) the presence of insulin resistance 10–20 years before the onset of the disease (2, 3); (b) cross-sectional studies demonstrating that insulin resistance is a consistent finding in patients with type 2 diabetes (3–6); and (c) prospective studies demonstrating that insulin resistance is the best predictor of whether or not an individual will later become diabetic (2, 3). Here, I focus on some recent advances in our understanding of human insulin resistance that have been made using nuclear magnetic resonance spectroscopy (NMR). This technique takes advantage of the spin properties of the nuclei of certain isotopes, such as 1H, 13C, and 31P, which endow the isotopes with a magnetic component that can be used to measure the concentration of intracellular metabolites noninvasively and to assess biochemical differences between normal and diabetic subjects. Drawing on NMR studies from my laboratory and others, I first consider the control of glucose phosphorylation and transport in regulating muscle responses to insulin. I then turn to the effects of fatty acids on insulin responses, showing that commonly accepted models that attempt to explain the association of insulin resistance and obesity are incompatible with recent findings. Finally, I propose an alternative model that appears to fit these and other available data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
2秒前
celinewu完成签到,获得积分10
3秒前
Aippan完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
田様应助呆萌太清采纳,获得20
4秒前
上guanguan完成签到,获得积分10
5秒前
哭泣战斗机应助kawaiikid采纳,获得10
5秒前
香蕉君达完成签到,获得积分10
5秒前
5秒前
我行我素完成签到 ,获得积分10
5秒前
不会写论文的小蜜蜂完成签到 ,获得积分10
6秒前
6秒前
6秒前
读书明智发布了新的文献求助10
6秒前
脆脆鲨发布了新的文献求助10
6秒前
6秒前
6秒前
起床了吗发布了新的文献求助10
6秒前
lzj发布了新的文献求助10
6秒前
zsy完成签到,获得积分10
7秒前
7秒前
zyyy发布了新的文献求助10
7秒前
汉堡包应助heiye采纳,获得10
8秒前
8秒前
8秒前
高级丹药师发布了新的文献求助100
8秒前
123完成签到,获得积分10
9秒前
9秒前
英俊的铭应助drwzm采纳,获得10
9秒前
hodge完成签到,获得积分10
9秒前
10秒前
英姑应助nanno采纳,获得10
10秒前
10秒前
今后应助fantastic采纳,获得10
11秒前
wang完成签到,获得积分10
11秒前
qq完成签到,获得积分10
11秒前
ELEGENCE发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807