数学
区间(图论)
理论(学习稳定性)
模糊逻辑
概率逻辑
模糊控制系统
控制理论(社会学)
航程(航空)
凸性
概率分布
数学优化
应用数学
计算机科学
控制(管理)
统计
材料科学
组合数学
人工智能
机器学习
金融经济学
经济
复合材料
作者
Dong Yue,Engang Tian,Yijun Zhang,Chen Peng
标识
DOI:10.1109/tsmcb.2008.2007496
摘要
In this paper, we are concerned with the problem of stability analysis and stabilization control design for Takagi-Sugeno (T-S) fuzzy systems with probabilistic interval delay. By employing the information of probability distribution of the time delay, the original system is transformed into a T-S fuzzy model with stochastic parameter matrices. Based on the new type of T-S fuzzy model, the delay-distribution-dependent criteria for the mean-square exponential stability of the considered systems are derived by using the Lyapunov-Krasovskii functional method, parallel distributed compensation approach, and the convexity of some matrix equations. The solvability of the derived criteria depends not only on the size of the delay but also on the probability distribution of the delay taking values in some intervals. The revisions of the main criteria in this paper can also be used to deal with the case when only the information of variation range of the delay is considered. It is shown by practical examples that our method can lead to very less conservative results than those by other existing methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI