亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Variable Selection Using Adaptive Nonlinear Interaction Structures in High Dimensions

非线性系统 变量(数学) 选择(遗传算法) 约束(计算机辅助设计) 数学 回归 计算机科学 数学优化 特征选择 应用数学 人工智能 统计 数学分析 物理 量子力学 几何学
作者
Peter Radchenko,Gareth James
标识
DOI:10.1198/jasa.2010.tm10130
摘要

Numerous penalization based methods have been proposed for fitting a traditional linear regression model in which the number of predictors, p, is large relative to the number of observations, n. Most of these approaches assume sparsity in the underlying coefficients and perform some form of variable selection. Recently, some of this work has been extended to nonlinear additive regression models. However, in many contexts one wishes to allow for the possibility of interactions among the predictors. This poses serious statistical and computational difficulties when p is large, as the number of candidate interaction terms is of order p2. We introduce a new approach, "Variable selection using Adaptive Nonlinear Interaction Structures in High dimensions" (VANISH), that is based on a penalized least squares criterion and is designed for high dimensional nonlinear problems. Our criterion is convex and enforces the heredity constraint, in other words if an interaction term is added to the model, then the corresponding main effects are automatically included. We provide theoretical conditions under which VANISH will select the correct main effects and interactions. These conditions suggest that VANISH should outperform certain natural competitors when the true interaction structure is sufficiently sparse. Detailed simulation results are also provided, demonstrating that VANISH is computationally efficient and can be applied to nonlinear models involving thousands of terms while producing superior predictive performance over other approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
等待秀发布了新的文献求助10
9秒前
my完成签到 ,获得积分10
20秒前
Jasper应助等待秀采纳,获得10
27秒前
Andy_2024完成签到,获得积分10
28秒前
丘比特应助任我行采纳,获得10
30秒前
32秒前
yaoyh_gc发布了新的文献求助10
36秒前
白华苍松发布了新的文献求助10
37秒前
37秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
jyy应助科研通管家采纳,获得10
41秒前
任我行发布了新的文献求助10
43秒前
wanci应助yaoyh_gc采纳,获得10
43秒前
46秒前
星弟完成签到 ,获得积分10
48秒前
48秒前
bonhiver完成签到 ,获得积分10
49秒前
49秒前
Z55发布了新的文献求助10
52秒前
54秒前
yyywwxx发布了新的文献求助10
55秒前
等待秀发布了新的文献求助10
55秒前
58秒前
59秒前
blue2021发布了新的文献求助10
1分钟前
1分钟前
Muhammad发布了新的文献求助30
1分钟前
思源应助yyywwxx采纳,获得10
1分钟前
1分钟前
starleo完成签到,获得积分10
1分钟前
Li发布了新的文献求助10
1分钟前
1分钟前
yaoyh_gc发布了新的文献求助10
1分钟前
blue2021发布了新的文献求助10
1分钟前
殷勤的紫槐完成签到,获得积分10
1分钟前
Li完成签到,获得积分10
1分钟前
1分钟前
Markming完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466780
求助须知:如何正确求助?哪些是违规求助? 3059575
关于积分的说明 9067114
捐赠科研通 2750043
什么是DOI,文献DOI怎么找? 1508934
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896