磷酸化
激酶
突变体
丝氨酸
生物
丝氨酸苏氨酸激酶
苏氨酸
螺旋线圈
河马信号通路
细胞生物学
磷酸化级联
蛋白质磷酸化
蛋白磷酸酶2
蛋白激酶A
生物化学
磷酸酶
化学
基因
作者
Bernard A. Callus,A. M. W. Verhagen,David L. Vaux
出处
期刊:FEBS Journal
[Wiley]
日期:2006-08-23
卷期号:273 (18): 4264-4276
被引量:228
标识
DOI:10.1111/j.1742-4658.2006.05427.x
摘要
Genetic screens in Drosophila have revealed that the serine/threonine kinase Hippo (Hpo) and the scaffold protein Salvador participate in a pathway that controls cell proliferation and apoptosis. Hpo most closely resembles the pro‐apoptotic mammalian sterile20 kinases 1 and 2 (Mst1 and 2), and Salvador (Sav) has a human orthologue hSav (also called hWW45). Here we show that Mst and hSav heterodimerize in an interaction requiring the conserved C‐terminal coiled‐coil domains of both proteins. hSav was also able to homodimerize, but this did not require its coiled‐coil domain. Coexpression of Mst and hSav led to phosphorylation of hSav and also increased its abundance. In vitro phosphorylation experiments indicate that the phosphorylation of Sav by Mst is direct. The stabilizing effect of Mst was much greater on N‐terminally truncated hSav mutants, as long as they retained the ability to bind Mst. Mst mutants that lacked the C‐terminal coiled‐coil domain and were unable to bind to hSav, also failed to stabilize or phosphorylate hSav, whereas catalytically inactive Mst mutants that retained the ability to bind to hSav were still able to increase its abundance, although they were no longer able to phosphorylate hSav. Together these results show that hSav can bind to, and be phosphorylated by, Mst, and that the stabilizing effect of Mst on hSav requires its interaction with hSav but is probably not due to phosphorylation of hSav by Mst.
科研通智能强力驱动
Strongly Powered by AbleSci AI