Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting

统计 回归 计量经济学 分位数回归 分位数 数学 表征(材料科学) 回归分析 纳米技术 材料科学
作者
Caroline K. Carrico,Chris Gennings,David C. Wheeler,Pam Factor‐Litvak
出处
期刊:Journal of Agricultural Biological and Environmental Statistics [Springer Science+Business Media]
卷期号:20 (1): 100-120 被引量:823
标识
DOI:10.1007/s13253-014-0180-3
摘要

In risk evaluation, the effect of mixtures of environmental chemicals on a common adverse outcome is of interest. However, due to the high dimensionality and inherent correlations among chemicals that occur together, the traditional methods (e.g. ordinary or logistic regression) suffer from collinearity and variance inflation, and shrinkage methods have limitations in selecting among correlated components. We propose a weighted quantile sum (WQS) approach to estimating a body burden index, which identifies "bad actors" in a set of highly correlated environmental chemicals. We evaluate and characterize the accuracy of WQS regression in variable selection through extensive simulation studies through sensitivity and specificity (i.e., ability of the WQS method to select the bad actors correctly and not incorrect ones). We demonstrate the improvement in accuracy this method provides over traditional ordinary regression and shrinkage methods (lasso, adaptive lasso, and elastic net). Results from simulations demonstrate that WQS regression is accurate under some environmentally relevant conditions, but its accuracy decreases for a fixed correlation pattern as the association with a response variable diminishes. Nonzero weights (i.e., weights exceeding a selection threshold parameter) may be used to identify bad actors; however, components within a cluster of highly correlated active components tend to have lower weights, with the sum of their weights representative of the set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33发布了新的文献求助10
1秒前
优秀的芯完成签到,获得积分10
1秒前
1秒前
隐形曼青应助小透明采纳,获得10
2秒前
小姜发布了新的文献求助10
2秒前
yuan发布了新的文献求助10
2秒前
cenzy完成签到,获得积分10
2秒前
Ava应助1212采纳,获得10
2秒前
3秒前
研友_Z1eelZ发布了新的文献求助10
3秒前
Fanfan完成签到 ,获得积分10
3秒前
cc发布了新的文献求助10
3秒前
宓天问发布了新的文献求助10
3秒前
蔷薇之花发布了新的文献求助10
3秒前
Bizibili完成签到,获得积分10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
子车茗应助科研通管家采纳,获得30
4秒前
领导范儿应助啊啊啊啊采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
子车茗应助科研通管家采纳,获得30
4秒前
Rondab应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
Rondab应助科研通管家采纳,获得10
4秒前
Rondab应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得20
5秒前
无花果应助科研通管家采纳,获得10
5秒前
TiO2完成签到 ,获得积分10
5秒前
所所应助科研通管家采纳,获得10
5秒前
CyrusSo524应助科研通管家采纳,获得10
5秒前
young应助科研通管家采纳,获得10
5秒前
Rondab应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得30
5秒前
5秒前
研友_Y59785应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
6秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016278
求助须知:如何正确求助?哪些是违规求助? 3556388
关于积分的说明 11320934
捐赠科研通 3289218
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887940
科研通“疑难数据库(出版商)”最低求助积分说明 812060