化学
两亲性
树枝状大分子
赖氨酸
部分
碳二亚胺
烷基
硫酸化
有机化学
组合化学
高分子化学
聚合物
氨基酸
生物化学
共聚物
作者
Shuqin Han,Taisei Kanamoto,Hideki Nakashima,Takashi Yoshida
标识
DOI:10.1016/j.carbpol.2012.06.044
摘要
A new third generation amphiphilic glycodendrimer was synthesized from a stearylamide lysine dendrimer by condensation of the oligosaccharide moiety. By stepwise condensation and deprotection of di-boc lysine from a core of stearyl amide lysine, a third-generation stearylamide lysine dendrimer was constructed. Acetyl cellobiose and glucose units with the carboxylic acid at the end of alkyl chain attached to the reducing end of the sugar moiety was condensed with surface amino groups of the third generation lysine dendrimer, respectively, to give a new stearylamide acetylcellobiose and acetylglucose lysine dendrimers. The structural analysis was carried out using NMR, IR, and matrix-associated laser desorption/ionization time-of-flight (MALDI TOF) mass spectroscopies. After deacetylation to recover hydroxyl groups and subsequent sulfation, the third-generation sulfated cellobiose stearylamide lysine dendrimer was preliminarily found to have high anti-HIV activity at a 50% effective concentration (EC(50)) as low as 6.4 μg/ml and low cytotoxicity at a 50% cytotoxic concentration (CC(50)) as high as 1000 μg/ml, indicating that the dendrimer gave the enhancement of the functionality of oligosaccharides with low molecular weights. The glycodendrimer with a hydrophobic stearyl chain is immobilized on hydrophobic surfaces by hydrophobic interaction and is expected to provide a new biomedical material with the surface functionality of hydrophilic sulfated oligosaccharides.
科研通智能强力驱动
Strongly Powered by AbleSci AI