A technology enabling improved properties of polymer conductive pastes

材料科学 导电体 复合材料 基质(水族馆) 电磁屏蔽 环氧树脂 丝网印刷 导电油墨 接触电阻 聚合物 导电聚合物 胶粘剂 可靠性(半导体) 填料(材料) 薄板电阻 功率(物理) 海洋学 物理 图层(电子) 量子力学 地质学
作者
Marco Luniak,M. Roellig,Klaus‐Jürgen Wolter
标识
DOI:10.1109/isse.2003.1260494
摘要

The use of conductive pastes in polymer thick-film technology shows a continual increase since 1970. This technology offers the possibility to work at low temperatures on low-cost substrates. Main applications are the mass production of membrane touch keys, the via-fill of PCB's and the electromagnetic shielding. A relatively new market are smart labels. These RFID tags have the potential to replace the common barcode systems in future. So, the today's manufacturing costs have to be reduced by increasing the throughput and the use of low-cost materials. The electrical performance and therefore also the reading distance of such smart labels is mainly determined by the resistance of its antenna. This paper shows our investigations in manufacturing smart labels by screen-printed polymer conductive pastes. Compared to the common metal-etched antennae (copper, aluminum) printed antennae have only poor electrical performance. So it was necessary to increase the particle density of the conductive silver paste. Applying a DoE we have tested the effect of a compression process. The results show a substantial improving of the paste properties. Not only the area resistance is reduced by more than 70 percent. Also the reliability has been improved; the adhesion strength is increased by 2.4 times. Due to compression process at temperatures around glass transition temperature of epoxy resin the conductive particles form a closer contact to each other and are stronger interlocked within the substrate material, especially in the case of paper. In consequence the wide range of commercial silver pastes can be used to buildup antenna coils with comparable performances as metal etched smart labels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zz发布了新的文献求助10
1秒前
2秒前
善学以致用应助手都杏仁采纳,获得10
2秒前
rybooker发布了新的文献求助10
3秒前
3秒前
3秒前
小萝莉完成签到,获得积分10
3秒前
lilian关注了科研通微信公众号
3秒前
大模型应助cyw采纳,获得10
6秒前
Ldq发布了新的文献求助10
6秒前
淡定如南完成签到,获得积分10
6秒前
7秒前
鳗鱼没发布了新的文献求助10
7秒前
8秒前
8秒前
卡萨卡萨完成签到,获得积分10
8秒前
浩儿完成签到,获得积分10
9秒前
你不知道发布了新的文献求助10
9秒前
刘一三发布了新的文献求助10
9秒前
10秒前
小学僧完成签到,获得积分10
10秒前
丘比特应助1111111采纳,获得10
11秒前
shain发布了新的文献求助20
11秒前
废仙儿完成签到 ,获得积分10
12秒前
12秒前
小学僧发布了新的文献求助10
14秒前
Pursue完成签到,获得积分10
14秒前
15秒前
15秒前
丫哄发布了新的文献求助10
16秒前
16秒前
16秒前
lilian发布了新的文献求助10
17秒前
Ashley发布了新的文献求助10
18秒前
yan完成签到,获得积分10
18秒前
Ha完成签到,获得积分10
19秒前
qq完成签到 ,获得积分10
20秒前
啦啦酱酱酱完成签到 ,获得积分10
22秒前
bkagyin应助xun采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514621
求助须知:如何正确求助?哪些是违规求助? 3097003
关于积分的说明 9233532
捐赠科研通 2791987
什么是DOI,文献DOI怎么找? 1532191
邀请新用户注册赠送积分活动 711832
科研通“疑难数据库(出版商)”最低求助积分说明 707031