Adaptive Ranking Mutation Operator Based Differential Evolution for Constrained Optimization

水准点(测量) 数学优化 差异进化 排名(信息检索) 操作员(生物学) 人口 计算机科学 约束(计算机辅助设计) 测试套件 进化算法 选择(遗传算法) 突变 最优化问题 数学 测试用例 人工智能 机器学习 大地测量学 回归分析 抑制因子 社会学 转录因子 基因 地理 生物化学 化学 人口学 几何学
作者
Wenyin Gong,Zhihua Cai,Dingwen Liang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:45 (4): 716-727 被引量:143
标识
DOI:10.1109/tcyb.2014.2334692
摘要

Differential evolution (DE) is a powerful evolutionary algorithm (EA) for numerical optimization. Combining with the constraint-handling techniques, recently, DE has been successfully used for the constrained optimization problems (COPs). In this paper, we propose the adaptive ranking mutation operator (ARMOR) for DE when solving the COPs. The ARMOR is expected to make DE converge faster and achieve feasible solutions faster. In ARMOR, the solutions are adaptively ranked according to the situation of the current population. More specifically, the population is classified into three situations, i.e., infeasible situation, semi-feasible situation, and feasible situation. In the infeasible situation, the solutions are ranked only based on their constraint violations; in the semi-feasible situation, they are ranked according to the transformed fitness; while in the feasible situation, the objective function value is used to assign ranks to different solutions. In addition, the selection probability of each solution is calculated differently in different situations. The ARMOR is simple, and it can be easily combined with most of constrained DE (CDE) variants. As illustrations, we integrate our approach into three representative CDE variants to evaluate its performance. The 24 benchmark functions presented in CEC 2006 and 18 benchmark functions presented in CEC 2010 are chosen as the test suite. Experimental results verify our expectation that the ARMOR is able to accelerate the original CDE variants in the majority of test cases. Additionally, ARMOR-based CDE is able to provide highly competitive results compared with other state-of-the-art EAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玖肆发布了新的文献求助30
刚刚
sanjun发布了新的文献求助10
1秒前
2秒前
ss完成签到,获得积分20
2秒前
2秒前
九姑娘完成签到 ,获得积分10
3秒前
独特元蝶发布了新的文献求助10
3秒前
Hello应助ZHOU采纳,获得10
3秒前
传奇3应助nqbscxttdh采纳,获得10
4秒前
4秒前
CipherSage应助一个西藏采纳,获得10
5秒前
5秒前
铁塔凌云完成签到,获得积分10
6秒前
6秒前
香蕉觅云应助freesialll采纳,获得10
7秒前
7秒前
背后寒烟发布了新的文献求助10
8秒前
8秒前
8秒前
wanci应助sanjun采纳,获得10
10秒前
10秒前
10秒前
烟花应助能干水杯采纳,获得10
11秒前
11秒前
big ben完成签到 ,获得积分0
12秒前
12秒前
情怀应助siriuslee99采纳,获得10
13秒前
雪意发布了新的文献求助10
13秒前
14秒前
小魏发布了新的文献求助10
14秒前
王柯予发布了新的文献求助10
15秒前
sera发布了新的文献求助10
15秒前
心碎的黄焖鸡完成签到 ,获得积分10
16秒前
小椰喃喃完成签到,获得积分10
16秒前
16秒前
平淡的绮彤完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
小马甲应助沉静胜采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646573
求助须知:如何正确求助?哪些是违规求助? 4771751
关于积分的说明 15035677
捐赠科研通 4805321
什么是DOI,文献DOI怎么找? 2569625
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485858