Provable Inductive Matrix Completion

秩(图论) 低秩近似 矩阵完成 计算机科学 缩小 数学优化 基质(化学分析) 数学 算法 域代数上的 组合数学 纯数学 物理 张量(固有定义) 复合材料 高斯分布 量子力学 材料科学
作者
Prateek Jain,Inderjit S. Dhillon
出处
期刊:Cornell University - arXiv 被引量:59
摘要

Consider a movie recommendation system where apart from the ratings information, side information such as user's age or movie's genre is also available. Unlike standard matrix completion, in this setting one should be able to predict inductively on new users/movies. In this paper, we study the problem of inductive matrix completion in the exact recovery setting. That is, we assume that the ratings matrix is generated by applying feature vectors to a low-rank matrix and the goal is to recover back the underlying matrix. Furthermore, we generalize the problem to that of low-rank matrix estimation using rank-1 measurements. We study this generic problem and provide conditions that the set of measurements should satisfy so that the alternating minimization method (which otherwise is a non-convex method with no convergence guarantees) is able to recover back the {\em exact} underlying low-rank matrix. In addition to inductive matrix completion, we show that two other low-rank estimation problems can be studied in our framework: a) general low-rank matrix sensing using rank-1 measurements, and b) multi-label regression with missing labels. For both the problems, we provide novel and interesting bounds on the number of measurements required by alternating minimization to provably converges to the {\em exact} low-rank matrix. In particular, our analysis for the general low rank matrix sensing problem significantly improves the required storage and computational cost than that required by the RIP-based matrix sensing methods \cite{RechtFP2007}. Finally, we provide empirical validation of our approach and demonstrate that alternating minimization is able to recover the true matrix for the above mentioned problems using a small number of measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ca完成签到,获得积分10
刚刚
刚刚
卜之玉完成签到 ,获得积分10
刚刚
laciry发布了新的文献求助10
1秒前
kimmie完成签到,获得积分20
1秒前
汉堡包应助玺鱼采纳,获得10
1秒前
2秒前
2秒前
Rexy发布了新的文献求助10
2秒前
2秒前
深情安青应助dragonking520采纳,获得10
2秒前
guo完成签到 ,获得积分10
2秒前
情怀应助尼可刹米洛贝林采纳,获得10
3秒前
3秒前
遇见完成签到 ,获得积分10
3秒前
禾伙人完成签到,获得积分10
4秒前
4秒前
猫好好完成签到,获得积分10
4秒前
鲤鱼夜玉发布了新的文献求助10
5秒前
青青草发布了新的文献求助10
5秒前
5秒前
N_wh完成签到,获得积分10
5秒前
默默诗筠完成签到,获得积分10
5秒前
6秒前
不加糖发布了新的文献求助10
6秒前
大个应助温柔体贴阿尔法采纳,获得10
6秒前
Kenzonvay完成签到,获得积分10
6秒前
小明明完成签到 ,获得积分10
6秒前
ww_wty发布了新的文献求助10
7秒前
崔哈哈发布了新的文献求助10
7秒前
yxy完成签到,获得积分10
7秒前
地平完成签到,获得积分10
7秒前
916应助MrPao采纳,获得10
8秒前
Rocc完成签到,获得积分10
9秒前
动人的怀柔完成签到,获得积分10
10秒前
10秒前
宇心完成签到,获得积分10
10秒前
杳鸢应助mini采纳,获得10
10秒前
zhongu应助mini采纳,获得10
10秒前
刘仁轨发布了新的文献求助10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950291
求助须知:如何正确求助?哪些是违规求助? 3495773
关于积分的说明 11078786
捐赠科研通 3226217
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800904