Provable Inductive Matrix Completion

秩(图论) 低秩近似 矩阵完成 计算机科学 缩小 数学优化 基质(化学分析) 数学 算法 域代数上的 组合数学 纯数学 物理 张量(固有定义) 复合材料 高斯分布 量子力学 材料科学
作者
Prateek Jain,Inderjit S. Dhillon
出处
期刊:Cornell University - arXiv 被引量:59
摘要

Consider a movie recommendation system where apart from the ratings information, side information such as user's age or movie's genre is also available. Unlike standard matrix completion, in this setting one should be able to predict inductively on new users/movies. In this paper, we study the problem of inductive matrix completion in the exact recovery setting. That is, we assume that the ratings matrix is generated by applying feature vectors to a low-rank matrix and the goal is to recover back the underlying matrix. Furthermore, we generalize the problem to that of low-rank matrix estimation using rank-1 measurements. We study this generic problem and provide conditions that the set of measurements should satisfy so that the alternating minimization method (which otherwise is a non-convex method with no convergence guarantees) is able to recover back the {\em exact} underlying low-rank matrix. In addition to inductive matrix completion, we show that two other low-rank estimation problems can be studied in our framework: a) general low-rank matrix sensing using rank-1 measurements, and b) multi-label regression with missing labels. For both the problems, we provide novel and interesting bounds on the number of measurements required by alternating minimization to provably converges to the {\em exact} low-rank matrix. In particular, our analysis for the general low rank matrix sensing problem significantly improves the required storage and computational cost than that required by the RIP-based matrix sensing methods \cite{RechtFP2007}. Finally, we provide empirical validation of our approach and demonstrate that alternating minimization is able to recover the true matrix for the above mentioned problems using a small number of measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让的苡完成签到 ,获得积分10
1秒前
zhenghua发布了新的文献求助10
1秒前
2秒前
3秒前
淡淡茉莉完成签到,获得积分10
3秒前
5秒前
5秒前
5秒前
www发布了新的文献求助10
5秒前
赘婿应助111111采纳,获得10
6秒前
娜娜完成签到 ,获得积分10
6秒前
英俊安蕾完成签到,获得积分10
7秒前
lejunia发布了新的文献求助10
8秒前
淡淡茉莉发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
10秒前
桐桐应助安年采纳,获得10
11秒前
科目三应助lingyao采纳,获得10
11秒前
13秒前
哥哥发布了新的文献求助10
13秒前
Vincent1990完成签到,获得积分10
14秒前
杨涵发布了新的文献求助10
14秒前
14秒前
科研通AI2S应助默默襄采纳,获得10
14秒前
贝博拉完成签到,获得积分10
14秒前
朴实乐曲发布了新的文献求助10
15秒前
忐忑的马里奥完成签到,获得积分20
17秒前
Madao发布了新的文献求助10
17秒前
18秒前
cw完成签到,获得积分10
19秒前
可爱的函函应助net80yhm采纳,获得10
19秒前
可爱的函函应助lejunia采纳,获得10
19秒前
李爱国应助xunanlei采纳,获得10
19秒前
Anlionseas完成签到,获得积分10
19秒前
lmj完成签到,获得积分10
19秒前
20秒前
whr发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299983
求助须知:如何正确求助?哪些是违规求助? 4448023
关于积分的说明 13844467
捐赠科研通 4333625
什么是DOI,文献DOI怎么找? 2378986
邀请新用户注册赠送积分活动 1374155
关于科研通互助平台的介绍 1339786