Provable Inductive Matrix Completion

秩(图论) 低秩近似 矩阵完成 计算机科学 缩小 数学优化 基质(化学分析) 数学 算法 域代数上的 组合数学 纯数学 物理 张量(固有定义) 复合材料 高斯分布 量子力学 材料科学
作者
Prateek Jain,Inderjit S. Dhillon
出处
期刊:Cornell University - arXiv 被引量:59
摘要

Consider a movie recommendation system where apart from the ratings information, side information such as user's age or movie's genre is also available. Unlike standard matrix completion, in this setting one should be able to predict inductively on new users/movies. In this paper, we study the problem of inductive matrix completion in the exact recovery setting. That is, we assume that the ratings matrix is generated by applying feature vectors to a low-rank matrix and the goal is to recover back the underlying matrix. Furthermore, we generalize the problem to that of low-rank matrix estimation using rank-1 measurements. We study this generic problem and provide conditions that the set of measurements should satisfy so that the alternating minimization method (which otherwise is a non-convex method with no convergence guarantees) is able to recover back the {\em exact} underlying low-rank matrix. In addition to inductive matrix completion, we show that two other low-rank estimation problems can be studied in our framework: a) general low-rank matrix sensing using rank-1 measurements, and b) multi-label regression with missing labels. For both the problems, we provide novel and interesting bounds on the number of measurements required by alternating minimization to provably converges to the {\em exact} low-rank matrix. In particular, our analysis for the general low rank matrix sensing problem significantly improves the required storage and computational cost than that required by the RIP-based matrix sensing methods \cite{RechtFP2007}. Finally, we provide empirical validation of our approach and demonstrate that alternating minimization is able to recover the true matrix for the above mentioned problems using a small number of measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助Anxinxin采纳,获得10
刚刚
ww发布了新的文献求助10
刚刚
这小猪真帅完成签到,获得积分10
1秒前
Hulda完成签到,获得积分10
1秒前
可靠访蕊完成签到 ,获得积分10
2秒前
深情安青应助科研小白采纳,获得10
2秒前
八八完成签到,获得积分20
3秒前
请叫我风吹麦浪应助AIA7采纳,获得10
3秒前
智齿怪物一号完成签到,获得积分10
3秒前
舒适山槐完成签到,获得积分10
3秒前
HJJHJH发布了新的文献求助10
3秒前
易哒哒发布了新的文献求助10
3秒前
ZZZpp完成签到,获得积分10
4秒前
大个应助756采纳,获得10
5秒前
6秒前
喵呜发布了新的文献求助10
6秒前
Ava应助k7采纳,获得10
6秒前
领导范儿应助cc采纳,获得10
6秒前
橘子发布了新的文献求助40
6秒前
6秒前
benben完成签到,获得积分10
7秒前
wjq完成签到,获得积分10
7秒前
7秒前
8秒前
亓亓完成签到 ,获得积分10
8秒前
8秒前
phz发布了新的文献求助10
9秒前
9秒前
Stephen完成签到,获得积分10
9秒前
shengChen完成签到,获得积分10
9秒前
9秒前
怎么睡不醒完成签到 ,获得积分10
9秒前
CipherSage应助沉静的迎荷采纳,获得10
10秒前
彩色铅笔完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
淡定的思松应助通~采纳,获得10
11秒前
ycp完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794