Predicting Protein Solubility with a Hybrid Approach by Pseudo Amino Acid Composition

支持向量机 人工神经网络 伪氨基酸组成 人工智能 交叉验证 溶解度 计算机科学 相似性(几何) 相关系数 反向传播 模式识别(心理学) 氨基酸 生物系统 算法 机器学习 化学 生物 生物化学 图像(数学) 有机化学 二肽
作者
Xiaohui Niu,Nana Li,Feng Shi,Hu Xuehai,Jingbo Xia,Xiong Huijuan
出处
期刊:Protein and Peptide Letters [Bentham Science Publishers]
卷期号:17 (12): 1466-1472 被引量:14
标识
DOI:10.2174/0929866511009011466
摘要

Protein solubility plays a major role for understanding the crystal growth and crystallization process of protein. How to predict the propensity of a protein to be soluble or to form inclusion body is a long but not fairly resolved problem. After choosing almost 10,000 protein sequences from NCBI database and eliminating the sequences with 90% homologous similarity by CD-HIT, 5692 sequences remained. By using Chous pseudo amino acid composition features, we predict the soluble protein with the three methods: support vector machine (SVM), back propagation neural network (BP Neural Network) and hybrid method based on SVM and BP Neural Network, respectively. Each method is evaluated by the re-substitution test and 10-fold cross-validation test. In the re-substitution test, the BP Neural Network performs with the best results, in which the accuracy achieves 92.88% and Matthews Correlation Coefficient (MCC) achieves 0.8513. Meanwhile, the other two methods are better than BP Neural Network in 10-fold cross-validation test. The hybrid method based on SVM and BP Neural Network is the best. The average accuracy is 86.78% and average MCC is 0.7233. Although all of the three methods achieve considerable evaluations, the hybrid method is deemed to be the best, according to the performance comparison. Keywords: Amino acid composition, neural network, hybrid approach, prediction, protein solubility, support vector machine, NCBI database, Chou's pseudo amino acid, CD-HIT, back propagation neural network, hybrid method, Matthews Correlation Coefficient, Escherichia Coli, Arg residues, cysteine fraction, proline fraction, GalNAc-transferase, serine hydrolases, human papillomaviruses, DNA-binding proteins, Isoleucine, Leucine, Valine, methionine, Arginine, Lysine, Aspartic acid, Glutamic acid, Asparagine, Glutamine, Histidine, Serine, Threonine, Proline, Alanine, Glycine, Cysteine, Phenylalanine, Artificial Neural Network, jackknife test, cross validation test
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哆啦A梦发布了新的文献求助10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
一根藤发布了新的文献求助10
1秒前
肖小张发布了新的文献求助10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得20
1秒前
大个应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
谦让的博完成签到,获得积分10
2秒前
2秒前
蜡笔小新发布了新的文献求助10
3秒前
Tammy完成签到,获得积分10
3秒前
3秒前
4秒前
zhoujunjie完成签到,获得积分10
4秒前
Aura完成签到,获得积分10
4秒前
墨墨叻发布了新的文献求助10
5秒前
harry2021完成签到,获得积分10
6秒前
MeOH拿桶接发布了新的文献求助30
7秒前
乐乐应助如风随水采纳,获得10
7秒前
zhoujunjie发布了新的文献求助10
8秒前
9秒前
ding应助哆啦A梦采纳,获得10
9秒前
10秒前
yznfly应助jiao采纳,获得30
12秒前
12秒前
13秒前
huang发布了新的文献求助10
13秒前
14秒前
Jason完成签到 ,获得积分10
15秒前
15秒前
16秒前
orixero应助Zu采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952600
求助须知:如何正确求助?哪些是违规求助? 3498061
关于积分的说明 11090076
捐赠科研通 3228597
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801344