反推
常量(计算机编程)
控制理论(社会学)
数学
观察员(物理)
边界(拓扑)
李雅普诺夫函数
扰动(地质)
数学分析
稳定性理论
转化(遗传学)
边值问题
职位(财务)
估计理论
自适应控制
控制(管理)
计算机科学
非线性系统
物理
古生物学
生物化学
化学
量子力学
人工智能
算法
基因
生物
程序设计语言
财务
经济
作者
Bao‐Zhu Guo,Hua-Cheng Zhou,A. S. Al-Fhaid,Arshad M. M. Younas,Asim Asiri
标识
DOI:10.1016/j.jfranklin.2015.02.020
摘要
We consider parameter estimation and stabilization for a one-dimensional Schrödinger equation with an unknown constant disturbance suffered from the boundary observation at one end and the non-collocated control at other end. An adaptive observer is designed in terms of measured position with unknown constant by the Lyapunov functional approach. By a backstepping transformation for infinite-dimensional systems, it is shown that the resulting closed-loop system is asymptotically stable. Meanwhile, the estimated parameter is shown to be convergent to the unknown parameter as time goes to infinity. The numerical experiments are carried out to illustrate the proposed approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI