细胞凋亡
NLRP1
炎症
上睑下垂
神经保护
吡喃结构域
目标2
冲程(发动机)
缺血
内科学
细胞生物学
作者
Yang-Wei Fann,Soo-Youn Lee,Silvia Manzanero,Sung-Chun Tang,Mathias Gelderblom,Prasad Chunduri,Christian Bernreuther,Markus Glatzel,Yuxiang Cheng,John Thundyil,Alexander Widiapradja,Ker-Zhing Lok,Sok Lin Foo,Y-C Wang Wang,Y-I Li,Grant Raymond Drummond,Milan Basta,Tim Magnus,Dong-Gyu Jo,Mark P. Mattson,Christopher G. Sobey,Thiruma V. Arumugam
标识
DOI:10.1038/cddis.2013.326
摘要
Multi-protein complexes called inflammasomes have recently been identified and shown to contribute to cell death in tissue injury. Intravenous immunoglobulin (IVIg) is an FDA-approved therapeutic modality used for various inflammatory diseases. The objective of this study is to investigate dynamic responses of the NLRP1 and NLRP3 inflammasomes in stroke and to determine whether the NLRP1 and NLRP3 inflammasomes can be targeted with IVIg for therapeutic intervention. Primary cortical neurons were subjected to glucose deprivation (GD), oxygen–glucose deprivation (OGD) or simulated ischemia-reperfusion (I/R). Ischemic stroke was induced in C57BL/6J mice by middle cerebral artery occlusion, followed by reperfusion. Neurological assessment was performed, brain tissue damage was quantified, and NLRP1 and NLRP3 inflammasome protein levels were evaluated. NLRP1 and NLRP3 inflammasome components were also analyzed in postmortem brain tissue samples from stroke patients. Ischemia-like conditions increased the levels of NLRP1 and NLRP3 inflammasome proteins, and IL-1β and IL-18, in primary cortical neurons. Similarly, levels of NLRP1 and NLRP3 inflammasome proteins, IL-1β and IL-18 were elevated in ipsilateral brain tissues of cerebral I/R mice and stroke patients. Caspase-1 inhibitor treatment protected cultured cortical neurons and brain cells in vivo in experimental stroke models. IVIg treatment protected neurons in experimental stroke models by a mechanism involving suppression of NLRP1 and NLRP3 inflammasome activity. Our findings provide evidence that the NLRP1 and NLRP3 inflammasomes have a major role in neuronal cell death and behavioral deficits in stroke. We also identified NLRP1 and NLRP3 inflammasome inhibition as a novel mechanism by which IVIg can protect brain cells against ischemic damage, suggesting a potential clinical benefit of therapeutic interventions that target inflammasome assembly and activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI