二甲双胍
安普克
内分泌学
内科学
代谢物
AMP活化蛋白激酶
糖异生
蛋白激酶A
医学
糖尿病
药理学
化学
磷酸化
新陈代谢
生物化学
作者
Kumsun Cho,Jae‐Yong Chung,Sung Kweon Cho,Hyun‐Woo Shin,In‐Jin Jang,Jong‐Wan Park,Kyung‐Sang Yu,Joo‐Youn Cho
摘要
Abstract Metformin is a first-line drug for treating type 2 diabetes. Although metformin is known to phosphorylate AMP-activated protein kinase (AMPK), it is unclear how the glucose-lowering effect of metformin is related to AMPK activation. The aim of this study was to identify the urinary endogenous metabolites affected by metformin and to identify the novel underlying molecular mechanisms related to its anti-diabetic effect. Fourteen healthy male subjects were orally administered metformin (1000 mg) once. First morning urine samples were taken before and after administration to obtain metabolomic data. We then further investigated the anti-diabetic mechanism of metformin in vitro and in vivo . The fluctuation of the metabolite cortisol indicated that the neuroendocrine system was involved in the anti-diabetic effect of metformin. Actually we found that metformin induced AMPK/liver X receptor α (LXRα) phosphorylation, followed by pro-opiomelanocortin (POMC) suppression in rat pituitary cells. We confirmed this result by administering metformin in an animal study. Given that cortisol stimulates gluconeogenesis, we propose the anti-hyperglycemic effect of metformin is attributed to reduced POMC/adrenocorticotropic hormone (ACTH)/cortisol levels following AMPK/LXRα phosphorylation in the pituitaries.
科研通智能强力驱动
Strongly Powered by AbleSci AI