糖尿病性视网膜病变
糖尿病
基质金属蛋白酶
内分泌学
内科学
视网膜
视网膜
辛伐他汀
下调和上调
细胞凋亡
发病机制
链脲佐菌素
视网膜病变
血管通透性
化学
医学
生物
生物化学
神经科学
基因
摘要
Diabetes activates a small molecular weight G-protein, H-Ras, in the retina and its capillary cells, and H-Ras activation is implicated in the apoptosis of retinal capillary cells. Matrix metalloproteinase (MMP)-9 is regulated by H-Ras, and in diabetes its activation is associated with increased vascular permeability. The goal of this study was to investigate the role of sustained activation of MMP-9 in the pathogenesis of diabetic retinopathy and to illustrate the mechanism through which it is upregulated in diabetes.Retinal MMP-9 activation and its tissue inhibitor, TIMP-1, were quantified in streptozotocin-induced diabetic rats. Inhibition of H-Ras by simvastatin on diabetes-induced activation of H-Ras was evaluated. The mechanism by which diabetes regulates retinal MMP-9 was confirmed by determining the effect of genetic or pharmacologic regulation of H-Ras on its activation in retinal endothelial cells.In rats, MMP-9 was activated and expression of TIMP-1 was decreased in the retina and its microvasculature at both 2 months and 12 months of diabetes. In retinal endothelial cells, high glucose activated MMP-9, and inhibition of its activation (by pharmacologic inhibitor or siRNA) ameliorated accelerated apoptosis. Inhibition of H-Ras, both in diabetic rats (simvastatin) and in isolated endothelial cells (H-Ras siRNA), abrogated the activation of MMP-9 and prevented the reduction of TIMP-1.Hyperglycemia-induced activation of MMP-9 accelerates apoptosis of retinal capillary cells, a phenomenon that predicts the development of diabetic retinopathy, and the activation of MMP-9 is downstream of H-Ras. Characterizing the role of MMP-9 in the development of diabetic retinopathy will help explore novel molecular targets for future pharmacological interventions.
科研通智能强力驱动
Strongly Powered by AbleSci AI