角膜
细胞外基质
去细胞化
再生(生物学)
角膜移植
移植
层粘连蛋白
组织工程
细胞生物学
自愈水凝胶
基底膜
再生医学
生物医学工程
解剖
生物
化学
干细胞
医学
神经科学
外科
有机化学
作者
Fengfu Li,D. J. Carlsson,Chris P. Lohmann,Erik J. Suuronen,Sandy G. Vascotto,Karin Kobuch,Heather Sheardown,Réjean Munger,Masatsugu Nakamura,May Griffith
标识
DOI:10.1073/pnas.2536767100
摘要
Our objective was to determine whether key properties of extracellular matrix (ECM) macromolecules can be replicated within tissue-engineered biosynthetic matrices to influence cellular properties and behavior. To achieve this, hydrated collagen and N-isopropylacrylamide copolymer-based ECMs were fabricated and tested on a corneal model. The structural and immunological simplicity of the cornea and importance of its extensive innervation for optimal functioning makes it an ideal test model. In addition, corneal failure is a clinically significant problem. Matrices were therefore designed to have the optical clarity and the proper dimensions, curvature, and biomechanical properties for use as corneal tissue replacements in transplantation. In vitro studies demonstrated that grafting of the laminin adhesion pentapeptide motif, YIGSR, to the hydrogels promoted epithelial stratification and neurite in-growth. Implants into pigs' corneas demonstrated successful in vivo regeneration of host corneal epithelium, stroma, and nerves. In particular, functional nerves were observed to rapidly regenerate in implants. By comparison, nerve regeneration in allograft controls was too slow to be observed during the experimental period, consistent with the behavior of human cornea transplants. Other corneal substitutes have been produced and tested, but here we report an implantable matrix that performs as a physiologically functional tissue substitute and not simply as a prosthetic device. These biosynthetic ECM replacements should have applicability to many areas of tissue engineering and regenerative medicine, especially where nerve function is required.
科研通智能强力驱动
Strongly Powered by AbleSci AI