亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mixed-integer nonlinear optimization

数学优化 最大值和最小值 非线性规划 非线性系统 数学 整数规划 凸优化 计算机科学 树(集合论) 航程(航空) 正多边形 整数(计算机科学) 物理 数学分析 复合材料 量子力学 材料科学 程序设计语言 几何学
作者
Pietro Belotti,Christian Kirches,Sven Leyffer,Jeff Linderoth,James Luedtke,Ashutosh Mahajan
出处
期刊:Acta Numerica [Cambridge University Press]
卷期号:22: 1-131 被引量:586
标识
DOI:10.1017/s0962492913000032
摘要

Many optimal decision problems in scientific, engineering, and public sector applications involve both discrete decisions and nonlinear system dynamics that affect the quality of the final design or plan. These decision problems lead to mixed-integer nonlinear programming (MINLP) problems that combine the combinatorial difficulty of optimizing over discrete variable sets with the challenges of handling nonlinear functions. We review models and applications of MINLP, and survey the state of the art in methods for solving this challenging class of problems. Most solution methods for MINLP apply some form of tree search. We distinguish two broad classes of methods: single-tree and multitree methods. We discuss these two classes of methods first in the case where the underlying problem functions are convex. Classical single-tree methods include nonlinear branch-and-bound and branch-and-cut methods, while classical multitree methods include outer approximation and Benders decomposition. The most efficient class of methods for convex MINLP are hybrid methods that combine the strengths of both classes of classical techniques. Non-convex MINLPs pose additional challenges, because they contain non-convex functions in the objective function or the constraints; hence even when the integer variables are relaxed to be continuous, the feasible region is generally non-convex, resulting in many local minima. We discuss a range of approaches for tackling this challenging class of problems, including piecewise linear approximations, generic strategies for obtaining convex relaxations for non-convex functions, spatial branch-and-bound methods, and a small sample of techniques that exploit particular types of non-convex structures to obtain improved convex relaxations. We finish our survey with a brief discussion of three important aspects of MINLP. First, we review heuristic techniques that can obtain good feasible solution in situations where the search-tree has grown too large or we require real-time solutions. Second, we describe an emerging area of mixed-integer optimal control that adds systems of ordinary differential equations to MINLP. Third, we survey the state of the art in software for MINLP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
吃了就会胖完成签到 ,获得积分10
4秒前
小米辣发布了新的文献求助30
7秒前
dream完成签到 ,获得积分10
9秒前
20秒前
45秒前
丫子天空发布了新的文献求助10
50秒前
52秒前
lzxbarry应助andrele采纳,获得30
1分钟前
燕子完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
呆萌的鼠标完成签到 ,获得积分0
2分钟前
2分钟前
似水无痕完成签到,获得积分10
2分钟前
Anto完成签到,获得积分10
2分钟前
kuoping完成签到,获得积分0
2分钟前
李健应助科研通管家采纳,获得10
2分钟前
丫子天空完成签到,获得积分20
3分钟前
QCB完成签到 ,获得积分10
3分钟前
wodetaiyangLLL完成签到 ,获得积分10
3分钟前
科研通AI5应助彭日晓采纳,获得10
3分钟前
ZHANG完成签到 ,获得积分10
4分钟前
tenta完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
千里草完成签到,获得积分10
5分钟前
彭日晓发布了新的文献求助10
5分钟前
significant发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
忍忍发布了新的文献求助30
6分钟前
kingcoffee完成签到 ,获得积分10
6分钟前
忍忍完成签到 ,获得积分10
6分钟前
彭日晓完成签到,获得积分10
7分钟前
8分钟前
靓丽的熠彤完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569068
求助须知:如何正确求助?哪些是违规求助? 3991392
关于积分的说明 12355756
捐赠科研通 3663569
什么是DOI,文献DOI怎么找? 2019007
邀请新用户注册赠送积分活动 1053435
科研通“疑难数据库(出版商)”最低求助积分说明 940978