Mixed-integer nonlinear optimization

数学优化 最大值和最小值 非线性规划 非线性系统 数学 整数规划 凸优化 计算机科学 树(集合论) 航程(航空) 正多边形 整数(计算机科学) 物理 数学分析 复合材料 量子力学 材料科学 程序设计语言 几何学
作者
Pietro Belotti,Christian Kirches,Sven Leyffer,Jeff Linderoth,James Luedtke,Ashutosh Mahajan
出处
期刊:Acta Numerica [Cambridge University Press]
卷期号:22: 1-131 被引量:586
标识
DOI:10.1017/s0962492913000032
摘要

Many optimal decision problems in scientific, engineering, and public sector applications involve both discrete decisions and nonlinear system dynamics that affect the quality of the final design or plan. These decision problems lead to mixed-integer nonlinear programming (MINLP) problems that combine the combinatorial difficulty of optimizing over discrete variable sets with the challenges of handling nonlinear functions. We review models and applications of MINLP, and survey the state of the art in methods for solving this challenging class of problems. Most solution methods for MINLP apply some form of tree search. We distinguish two broad classes of methods: single-tree and multitree methods. We discuss these two classes of methods first in the case where the underlying problem functions are convex. Classical single-tree methods include nonlinear branch-and-bound and branch-and-cut methods, while classical multitree methods include outer approximation and Benders decomposition. The most efficient class of methods for convex MINLP are hybrid methods that combine the strengths of both classes of classical techniques. Non-convex MINLPs pose additional challenges, because they contain non-convex functions in the objective function or the constraints; hence even when the integer variables are relaxed to be continuous, the feasible region is generally non-convex, resulting in many local minima. We discuss a range of approaches for tackling this challenging class of problems, including piecewise linear approximations, generic strategies for obtaining convex relaxations for non-convex functions, spatial branch-and-bound methods, and a small sample of techniques that exploit particular types of non-convex structures to obtain improved convex relaxations. We finish our survey with a brief discussion of three important aspects of MINLP. First, we review heuristic techniques that can obtain good feasible solution in situations where the search-tree has grown too large or we require real-time solutions. Second, we describe an emerging area of mixed-integer optimal control that adds systems of ordinary differential equations to MINLP. Third, we survey the state of the art in software for MINLP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
宣孤菱完成签到,获得积分10
3秒前
5秒前
善学以致用应助围城采纳,获得10
6秒前
DL发布了新的文献求助10
7秒前
7秒前
Flanker发布了新的文献求助10
7秒前
abne发布了新的文献求助10
8秒前
mengmeng6021发布了新的文献求助10
9秒前
liuhuan完成签到,获得积分10
9秒前
Linda发布了新的文献求助10
10秒前
10秒前
cccJF发布了新的文献求助10
12秒前
DL完成签到,获得积分10
14秒前
研友_VZG7GZ应助米线ing采纳,获得10
15秒前
摆渡人发布了新的文献求助10
15秒前
17秒前
18秒前
Lucas应助张怀民采纳,获得10
19秒前
20秒前
Akim应助十三月的过客采纳,获得10
20秒前
chenchenchen发布了新的文献求助10
21秒前
Zzz发布了新的文献求助10
23秒前
Yolo发布了新的文献求助10
23秒前
24秒前
CYAA完成签到,获得积分10
25秒前
WWXWWX发布了新的文献求助10
26秒前
28秒前
28秒前
31秒前
31秒前
32秒前
WWXWWX完成签到,获得积分10
32秒前
33秒前
33秒前
蒋蒋发布了新的文献求助10
35秒前
35秒前
water发布了新的文献求助20
36秒前
阔达小懒虫完成签到,获得积分10
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313894
求助须知:如何正确求助?哪些是违规求助? 2946248
关于积分的说明 8529066
捐赠科研通 2621808
什么是DOI,文献DOI怎么找? 1434115
科研通“疑难数据库(出版商)”最低求助积分说明 665131
邀请新用户注册赠送积分活动 650738