亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optics, Mechanics, and Energetics of Two-Dimensional MoS2 Nanostructures from a Theoretical Perspective

离域电子 单层 材料科学 纳米技术 二硫化钼 纳米压痕 纳米结构 费米能级 密度泛函理论 化学物理 电子结构 凝聚态物理 化学 计算化学 物理 复合材料 有机化学 电子 量子力学
作者
Jan‐Ole Joswig,Tommy Lorenz,Tsegabirhan B. Wendumu,Sibylle Gemming,Gotthard Seifert
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:48 (1): 48-55 被引量:59
标识
DOI:10.1021/ar500318p
摘要

CONSPECTUS: Nanostructures based on molybdenum disulfide (MoS2) are by far the most common and well-studied systems among two-dimensional (2D) semiconducting materials. Although still being characterized as a "promising material", catalytic activity of MoS2 nanostructures has been found, and applications in lubrication processes are pursued. Because exfoliation techniques have improved over the past years, monolayer MoS2 is easily at hand; thus, experimental studies on its electronic properties and applicability are in scientific focus, and some MoS2-based electronic devices have been reported already. Additionally, the improvement of atomic force microscopy led to nanoindentation experiments, in which the exceptional mechanical properties of MoS2 could be confirmed. In this Account, we review recent results from density-functional based calculations on several MoS2-based nanostructures; we have chosen to follow several experimental routes focusing on different nanostructures and their specific properties. MoS2-based triangular nanoflakes are systems that are experimentally well described and studied with a special focus on their optical absorption. The interpretation of our calculations fits well to the experimental picture: the absorption peaks in the visible light range show a quantum-confinement effect; they originate from excitations into the edge states. Additionally, delocalized metallic-like states are present close to the Fermi level, which do not contribute to photoabsorption in the visible range. Additionally, nanoindentation experiments have been simulated to obtain mechanical properties of the MoS2 material and to study the influence of deformation on the system's electronics. In these molecular-dynamics simulations, a tip penetrates a MoS2 monolayer, and the obtained Young's modulus and breaking stress agree very well with experimentally obtained values. Whereas the structural properties, such as bond lengths and layer contraction, vary locally differently upon indentation, the electronic structure in terms of the density of states, the gap between occupied and unoccupied states, or the quantum transport change only slightly. The robustness of the material with respect to electronic and mechanical properties makes monolayer MoS2 special. However, it is important to note that this robustness refers to a local disturbance through deformation and still seems to be dependent on the defect concentration. Finally, we present a comparison of the thermodynamic stabilities of different MoS2-based nanostructures with a focus on nanoflakes, fullerene-like nanooctahedra, and smaller Chevrel-type and non-Chevrel-type clusters (nanowires). All studied systems are stable in comparison to MoS2, Mo bulk, and the S8 crown, but only the studied nanoflakes and nanowires show specific stoichiometries, either sulfur-rich or sulfur-poor, whereas the nanooctahedra may adopt both. From the thermodynamic stabilities, it should be possible to deliberately choose specific nanostructures by thoughtful choices of the synthesis conditions. In conclusion, we present in this Account exceptional properties of MoS2-based nanostructures studied by means of density-functional theory. The focus lies on optical absorption in the visible range observed in triangular nanoflakes, which originate in the system's edge states, the robustness of monolayer MoS2 with respect to punctual loads regarding both mechanical and electronic properties, and the thermodynamic stability of most studied MoS2-based nanosystems revealing a correlation between composition and preferred morphology, particularly for 2D systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助苹果小玉采纳,获得10
3秒前
wanci应助被杖杀的茯苓采纳,获得10
8秒前
13秒前
Thi发布了新的文献求助10
18秒前
39秒前
46秒前
51秒前
拾英发布了新的文献求助10
53秒前
56秒前
标致金毛发布了新的文献求助10
58秒前
1分钟前
科研启动完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Zhy发布了新的文献求助10
1分钟前
被杖杀的茯苓完成签到,获得积分10
1分钟前
程新亮完成签到 ,获得积分10
1分钟前
含蓄的白安完成签到,获得积分10
1分钟前
2分钟前
SciGPT应助Hayat采纳,获得20
2分钟前
材料生发布了新的文献求助10
2分钟前
2分钟前
奋斗静蕾发布了新的文献求助10
2分钟前
wanci应助奋斗静蕾采纳,获得10
2分钟前
大胆的碧菡完成签到,获得积分10
3分钟前
blueskyzhi完成签到,获得积分10
3分钟前
3分钟前
陈杰发布了新的文献求助10
3分钟前
77777完成签到,获得积分10
3分钟前
4分钟前
小花小宝和阿飞完成签到 ,获得积分10
4分钟前
chelsea完成签到,获得积分10
4分钟前
Lucas应助Yuanyuan采纳,获得10
5分钟前
5分钟前
奋斗静蕾发布了新的文献求助10
5分钟前
脑洞疼应助奋斗静蕾采纳,获得10
6分钟前
wanci应助Hayat采纳,获得20
6分钟前
SUHAS完成签到,获得积分20
6分钟前
阿里发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568207
求助须知:如何正确求助?哪些是违规求助? 4652651
关于积分的说明 14701915
捐赠科研通 4594523
什么是DOI,文献DOI怎么找? 2521025
邀请新用户注册赠送积分活动 1492879
关于科研通互助平台的介绍 1463696