Optics, Mechanics, and Energetics of Two-Dimensional MoS2 Nanostructures from a Theoretical Perspective

离域电子 单层 材料科学 纳米技术 二硫化钼 纳米压痕 纳米结构 费米能级 密度泛函理论 化学物理 电子结构 凝聚态物理 化学 计算化学 物理 复合材料 有机化学 电子 量子力学
作者
Jan‐Ole Joswig,Tommy Lorenz,Tsegabirhan B. Wendumu,Sibylle Gemming,Gotthard Seifert
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:48 (1): 48-55 被引量:59
标识
DOI:10.1021/ar500318p
摘要

CONSPECTUS: Nanostructures based on molybdenum disulfide (MoS2) are by far the most common and well-studied systems among two-dimensional (2D) semiconducting materials. Although still being characterized as a "promising material", catalytic activity of MoS2 nanostructures has been found, and applications in lubrication processes are pursued. Because exfoliation techniques have improved over the past years, monolayer MoS2 is easily at hand; thus, experimental studies on its electronic properties and applicability are in scientific focus, and some MoS2-based electronic devices have been reported already. Additionally, the improvement of atomic force microscopy led to nanoindentation experiments, in which the exceptional mechanical properties of MoS2 could be confirmed. In this Account, we review recent results from density-functional based calculations on several MoS2-based nanostructures; we have chosen to follow several experimental routes focusing on different nanostructures and their specific properties. MoS2-based triangular nanoflakes are systems that are experimentally well described and studied with a special focus on their optical absorption. The interpretation of our calculations fits well to the experimental picture: the absorption peaks in the visible light range show a quantum-confinement effect; they originate from excitations into the edge states. Additionally, delocalized metallic-like states are present close to the Fermi level, which do not contribute to photoabsorption in the visible range. Additionally, nanoindentation experiments have been simulated to obtain mechanical properties of the MoS2 material and to study the influence of deformation on the system's electronics. In these molecular-dynamics simulations, a tip penetrates a MoS2 monolayer, and the obtained Young's modulus and breaking stress agree very well with experimentally obtained values. Whereas the structural properties, such as bond lengths and layer contraction, vary locally differently upon indentation, the electronic structure in terms of the density of states, the gap between occupied and unoccupied states, or the quantum transport change only slightly. The robustness of the material with respect to electronic and mechanical properties makes monolayer MoS2 special. However, it is important to note that this robustness refers to a local disturbance through deformation and still seems to be dependent on the defect concentration. Finally, we present a comparison of the thermodynamic stabilities of different MoS2-based nanostructures with a focus on nanoflakes, fullerene-like nanooctahedra, and smaller Chevrel-type and non-Chevrel-type clusters (nanowires). All studied systems are stable in comparison to MoS2, Mo bulk, and the S8 crown, but only the studied nanoflakes and nanowires show specific stoichiometries, either sulfur-rich or sulfur-poor, whereas the nanooctahedra may adopt both. From the thermodynamic stabilities, it should be possible to deliberately choose specific nanostructures by thoughtful choices of the synthesis conditions. In conclusion, we present in this Account exceptional properties of MoS2-based nanostructures studied by means of density-functional theory. The focus lies on optical absorption in the visible range observed in triangular nanoflakes, which originate in the system's edge states, the robustness of monolayer MoS2 with respect to punctual loads regarding both mechanical and electronic properties, and the thermodynamic stability of most studied MoS2-based nanosystems revealing a correlation between composition and preferred morphology, particularly for 2D systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ICSSCI完成签到,获得积分10
刚刚
1秒前
云川给云川的求助进行了留言
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
张十一发布了新的文献求助10
3秒前
安琪发布了新的文献求助10
3秒前
yuyy发布了新的文献求助10
4秒前
Olivia完成签到 ,获得积分10
4秒前
5秒前
5秒前
mrz发布了新的文献求助10
5秒前
虚心的绝施完成签到 ,获得积分10
6秒前
7秒前
7秒前
Alivelean发布了新的文献求助10
7秒前
充电宝应助聆(*^_^*)采纳,获得10
8秒前
syyyy完成签到,获得积分20
8秒前
10秒前
11秒前
12秒前
外向的涛完成签到,获得积分10
13秒前
斯文败类应助syyyy采纳,获得10
13秒前
Owen应助大半个菜鸟采纳,获得10
14秒前
15秒前
16秒前
幼儿园扛把子完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
zts发布了新的文献求助10
18秒前
stand应助嗯哼采纳,获得10
18秒前
zero完成签到,获得积分10
18秒前
18秒前
唐艺发布了新的文献求助10
20秒前
Jolin完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
王壕发布了新的文献求助10
23秒前
打打应助唐小颖采纳,获得10
24秒前
Alivelean完成签到,获得积分20
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713458
求助须知:如何正确求助?哪些是违规求助? 5215299
关于积分的说明 15270846
捐赠科研通 4865190
什么是DOI,文献DOI怎么找? 2611932
邀请新用户注册赠送积分活动 1562095
关于科研通互助平台的介绍 1519329