Optics, Mechanics, and Energetics of Two-Dimensional MoS2 Nanostructures from a Theoretical Perspective

离域电子 单层 材料科学 纳米技术 二硫化钼 纳米压痕 纳米结构 费米能级 密度泛函理论 化学物理 电子结构 凝聚态物理 化学 计算化学 物理 复合材料 有机化学 电子 量子力学
作者
Jan‐Ole Joswig,Tommy Lorenz,Tsegabirhan B. Wendumu,Sibylle Gemming,Gotthard Seifert
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:48 (1): 48-55 被引量:59
标识
DOI:10.1021/ar500318p
摘要

CONSPECTUS: Nanostructures based on molybdenum disulfide (MoS2) are by far the most common and well-studied systems among two-dimensional (2D) semiconducting materials. Although still being characterized as a "promising material", catalytic activity of MoS2 nanostructures has been found, and applications in lubrication processes are pursued. Because exfoliation techniques have improved over the past years, monolayer MoS2 is easily at hand; thus, experimental studies on its electronic properties and applicability are in scientific focus, and some MoS2-based electronic devices have been reported already. Additionally, the improvement of atomic force microscopy led to nanoindentation experiments, in which the exceptional mechanical properties of MoS2 could be confirmed. In this Account, we review recent results from density-functional based calculations on several MoS2-based nanostructures; we have chosen to follow several experimental routes focusing on different nanostructures and their specific properties. MoS2-based triangular nanoflakes are systems that are experimentally well described and studied with a special focus on their optical absorption. The interpretation of our calculations fits well to the experimental picture: the absorption peaks in the visible light range show a quantum-confinement effect; they originate from excitations into the edge states. Additionally, delocalized metallic-like states are present close to the Fermi level, which do not contribute to photoabsorption in the visible range. Additionally, nanoindentation experiments have been simulated to obtain mechanical properties of the MoS2 material and to study the influence of deformation on the system's electronics. In these molecular-dynamics simulations, a tip penetrates a MoS2 monolayer, and the obtained Young's modulus and breaking stress agree very well with experimentally obtained values. Whereas the structural properties, such as bond lengths and layer contraction, vary locally differently upon indentation, the electronic structure in terms of the density of states, the gap between occupied and unoccupied states, or the quantum transport change only slightly. The robustness of the material with respect to electronic and mechanical properties makes monolayer MoS2 special. However, it is important to note that this robustness refers to a local disturbance through deformation and still seems to be dependent on the defect concentration. Finally, we present a comparison of the thermodynamic stabilities of different MoS2-based nanostructures with a focus on nanoflakes, fullerene-like nanooctahedra, and smaller Chevrel-type and non-Chevrel-type clusters (nanowires). All studied systems are stable in comparison to MoS2, Mo bulk, and the S8 crown, but only the studied nanoflakes and nanowires show specific stoichiometries, either sulfur-rich or sulfur-poor, whereas the nanooctahedra may adopt both. From the thermodynamic stabilities, it should be possible to deliberately choose specific nanostructures by thoughtful choices of the synthesis conditions. In conclusion, we present in this Account exceptional properties of MoS2-based nanostructures studied by means of density-functional theory. The focus lies on optical absorption in the visible range observed in triangular nanoflakes, which originate in the system's edge states, the robustness of monolayer MoS2 with respect to punctual loads regarding both mechanical and electronic properties, and the thermodynamic stability of most studied MoS2-based nanosystems revealing a correlation between composition and preferred morphology, particularly for 2D systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ayayaya发布了新的文献求助10
1秒前
1秒前
2秒前
李健应助荣荣采纳,获得10
2秒前
闻山发布了新的文献求助10
2秒前
3秒前
专注的泥猴桃完成签到,获得积分10
3秒前
单申奥完成签到 ,获得积分20
3秒前
3秒前
儿茶素发布了新的文献求助10
3秒前
马梦秋完成签到,获得积分10
3秒前
小鱼发布了新的文献求助10
3秒前
3秒前
redflower发布了新的文献求助10
4秒前
论英雄完成签到,获得积分10
4秒前
哦豁完成签到 ,获得积分10
4秒前
4秒前
立na发布了新的文献求助30
4秒前
5秒前
帅b发布了新的文献求助10
5秒前
胡春柳完成签到,获得积分10
5秒前
Chroninus完成签到,获得积分10
5秒前
5秒前
上官若男应助橘子林采纳,获得10
6秒前
6秒前
佐罗完成签到 ,获得积分10
6秒前
6秒前
852应助高源伯采纳,获得30
6秒前
XianShen发布了新的文献求助10
6秒前
墨易完成签到,获得积分10
6秒前
qingchi完成签到,获得积分10
6秒前
啊懂发布了新的文献求助10
7秒前
1223发布了新的文献求助10
7秒前
英姑应助许戈追求进步采纳,获得10
7秒前
8秒前
七叶树完成签到,获得积分10
8秒前
8秒前
爆米花应助清爽泥猴桃采纳,获得10
8秒前
皮蛋完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625139
求助须知:如何正确求助?哪些是违规求助? 4710965
关于积分的说明 14953364
捐赠科研通 4779073
什么是DOI,文献DOI怎么找? 2553598
邀请新用户注册赠送积分活动 1515504
关于科研通互助平台的介绍 1475786