结晶
无定形固体
混溶性
成核
热力学
分子动力学
化学
过冷
等温过程
超临界流体
结晶学
材料科学
化学物理
计算化学
有机化学
聚合物
物理
作者
Weili Heng,Yutong Song,Minqian Luo,Enshi Hu,Yuanfeng Wei,Yuan Gao,Zunting Pang,Jianjun Zhang,Shuai Qian
标识
DOI:10.1016/j.jconrel.2023.01.019
摘要
In our previous study, the coamorphous formulation of lurasidone hydrochloride (LH) with saccharin (SAC) showed significantly enhanced dissolution and physical stability compared to crystalline/amorphous LH. However, the coamorphous system is still in amorphous state, and has the tendency to recrystallization, which will in turn result in the loss of above advantages. In this study, the crystallization kinetics under isothermal and non-isothermal conditions was investigated. Compared to amorphous LH, coamorphous LH-SAC showed 68.3-361.2 and 2.6-6.1 times lower crystallization rates in glassy state and supercooled liquid state, respectively. After co-amorphization, the addition of SAC changed the crystallization mechanism of amorphous LH from nucleation-controlled to diffusion-controlled manner. Amorphous LH followed the site-saturated nucleation, whereas the coamorphous system exhibited a fixed number of nuclei. The non-isothermal crystallization indicated amorphous LH and coamorphous LH-SAC showed two-dimensional (JMAEK 2) and three-dimensional (JMAEK 3) growth of nuclei, respectively. Furthermore, coamorphous LH-SAC exhibited higher molecular mobility and dynamic fragility (mD) than amorphous LH, which is kinetically unfavorable for its physical stability. However, from thermodynamic perspective, coamorphous LH-SAC had a higher configurational entropy, i.e., a higher entropy barrier for crystallization, which is beneficial to hinder its crystallization. Therefore, it was concluded that the higher configurational entropy rather than the molecular mobility was proposed to be responsible for its improved stability. In addition, molecular dynamics simulations with miscibility, radial distribution function and binding energy calculations suggested coamorphous components exhibited good miscibility and strong intermolecular interactions, which was also conductive to the enhancement in its stability. This study offers an in-depth understanding about the effect of the coformer on the crystallization kinetics of coamorphous systems, and points out the important contribution of the configurational entropy in stabilizing the coamorphous systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI