Adaptive optimal process control with actor-critic design for energy-efficient batch machining subject to time-varying tool wear

机械加工 刀具磨损 元启发式 能源消耗 过程(计算) 机床 强化学习 能量(信号处理) 计算机科学 批量生产 工程类 数学优化 控制工程 机械工程 人工智能 数学 电气工程 操作系统 统计
作者
Qinge Xiao,Zhile Yang,Yingfeng Zhang,Pai Zheng
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:67: 80-96 被引量:12
标识
DOI:10.1016/j.jmsy.2023.01.005
摘要

Batch machining systems are essential for improving productivity and quality, but they consume considerable amounts of energy due to the continuous interaction with machine tools, workpieces, and cutting tools. In contrast to single-piece machining that has a short production cycle, the tool wear impacts in batch machining systems on energy consumption cannot be underestimated. However, few studies have focused on adaptive process control subject to time-varying tool wear because process optimization has always been previously considered a static problem. As an alternative to metaheuristic algorithms, reinforcement learning (RL) offers an attractive means for solving such a dynamic, high-dimensional, and high-coupling problem. In the case of turning cylindrical parts, an energy-efficient decision model is developed for the process control of pass operations of batch machining. The decision variables are decoupled by reformulating the problem as the Markov decision process, wherein the tool wear experiences dynamic changes. To solve the problem, an actor-critic RL framework with multi-constraint and multi-objective design is developed. Based on the framework, a dynamic process control method is proposed where the RL agent observes workpiece features, machining requirements, and tool wear states (inputs) and adaptively selects the control parameters such as cutting speed, feed rate, and cutting rate (outputs), with the aim to conserve energy. Two application tests and comparisons against metaheuristic methods are performed. The results indicate that the method can further reduce energy by over 20% compared with energy-efficient optimization ignoring tool wear effects. The learning efficiency of RL is about three times faster than that of metaheuristics. The online sampling time is less than 0.1 millisecond, which facilitates real-time control of process parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sakurai应助愤怒的寄琴采纳,获得10
刚刚
迟大猫应助简单的银耳汤采纳,获得10
刚刚
Owen应助LJL采纳,获得10
刚刚
1秒前
cwn完成签到,获得积分10
1秒前
zhuzhu完成签到,获得积分0
1秒前
丘比特应助彩色的蓝天采纳,获得10
1秒前
ChoccyPasta完成签到,获得积分10
2秒前
2秒前
感动的冬云完成签到,获得积分10
2秒前
嘤嘤嘤发布了新的文献求助10
3秒前
wuhaixia完成签到,获得积分10
3秒前
正版DY完成签到,获得积分10
3秒前
333发布了新的文献求助10
3秒前
醒醒发布了新的文献求助10
3秒前
xfxx发布了新的文献求助10
4秒前
Sissi完成签到 ,获得积分10
4秒前
校长完成签到,获得积分20
4秒前
尼亚吉拉完成签到,获得积分10
4秒前
4秒前
布布发布了新的文献求助10
4秒前
Zhang发布了新的文献求助10
5秒前
qinqin发布了新的文献求助10
6秒前
顾夏包发布了新的文献求助30
6秒前
钰宁发布了新的文献求助10
6秒前
NexusExplorer应助ZZZ采纳,获得10
7秒前
8秒前
顺心书琴完成签到,获得积分10
8秒前
习习应助Nifeng采纳,获得10
8秒前
mrmrer发布了新的文献求助10
8秒前
10秒前
MUSTer一一完成签到 ,获得积分10
10秒前
通通通完成签到,获得积分10
10秒前
10秒前
务实的菓完成签到 ,获得积分10
11秒前
似水流年完成签到,获得积分10
11秒前
An慧完成签到,获得积分10
11秒前
Hello应助阿金采纳,获得10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794