亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive optimal process control with actor-critic design for energy-efficient batch machining subject to time-varying tool wear

机械加工 刀具磨损 元启发式 能源消耗 过程(计算) 机床 强化学习 能量(信号处理) 计算机科学 批量生产 工程类 数学优化 控制工程 机械工程 人工智能 数学 电气工程 操作系统 统计
作者
Qinge Xiao,Zhile Yang,Yingfeng Zhang,Pai Zheng
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:67: 80-96 被引量:12
标识
DOI:10.1016/j.jmsy.2023.01.005
摘要

Batch machining systems are essential for improving productivity and quality, but they consume considerable amounts of energy due to the continuous interaction with machine tools, workpieces, and cutting tools. In contrast to single-piece machining that has a short production cycle, the tool wear impacts in batch machining systems on energy consumption cannot be underestimated. However, few studies have focused on adaptive process control subject to time-varying tool wear because process optimization has always been previously considered a static problem. As an alternative to metaheuristic algorithms, reinforcement learning (RL) offers an attractive means for solving such a dynamic, high-dimensional, and high-coupling problem. In the case of turning cylindrical parts, an energy-efficient decision model is developed for the process control of pass operations of batch machining. The decision variables are decoupled by reformulating the problem as the Markov decision process, wherein the tool wear experiences dynamic changes. To solve the problem, an actor-critic RL framework with multi-constraint and multi-objective design is developed. Based on the framework, a dynamic process control method is proposed where the RL agent observes workpiece features, machining requirements, and tool wear states (inputs) and adaptively selects the control parameters such as cutting speed, feed rate, and cutting rate (outputs), with the aim to conserve energy. Two application tests and comparisons against metaheuristic methods are performed. The results indicate that the method can further reduce energy by over 20% compared with energy-efficient optimization ignoring tool wear effects. The learning efficiency of RL is about three times faster than that of metaheuristics. The online sampling time is less than 0.1 millisecond, which facilitates real-time control of process parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Karol发布了新的文献求助10
刚刚
1秒前
chenlc971125完成签到 ,获得积分10
2秒前
Dreamchaser发布了新的文献求助10
5秒前
9秒前
Karol完成签到,获得积分10
11秒前
11秒前
兰兰发布了新的文献求助10
13秒前
四月完成签到,获得积分10
13秒前
lekins发布了新的文献求助10
16秒前
科研通AI6.1应助ainan采纳,获得10
17秒前
大个应助啵子采纳,获得10
18秒前
33秒前
科研通AI6.1应助lekins采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
35秒前
42秒前
ok关闭了ok文献求助
44秒前
48秒前
学术熊完成签到,获得积分20
49秒前
学术熊发布了新的文献求助10
52秒前
善学以致用应助jdjf采纳,获得10
1分钟前
风中沛柔完成签到,获得积分10
1分钟前
优秀冰真完成签到,获得积分10
1分钟前
1分钟前
Ray完成签到,获得积分10
1分钟前
jdjf发布了新的文献求助10
1分钟前
jdjf完成签到,获得积分10
1分钟前
enen完成签到,获得积分20
1分钟前
小状元完成签到 ,获得积分10
1分钟前
1分钟前
吊炸天完成签到 ,获得积分10
1分钟前
阿斯顿马丁完成签到,获得积分10
1分钟前
1分钟前
橘子发布了新的文献求助10
2分钟前
西风惊绿完成签到,获得积分10
2分钟前
zkk完成签到 ,获得积分10
2分钟前
ok发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780136
求助须知:如何正确求助?哪些是违规求助? 5652435
关于积分的说明 15452791
捐赠科研通 4910922
什么是DOI,文献DOI怎么找? 2643112
邀请新用户注册赠送积分活动 1590741
关于科研通互助平台的介绍 1545245