Adaptive optimal process control with actor-critic design for energy-efficient batch machining subject to time-varying tool wear

机械加工 刀具磨损 元启发式 能源消耗 过程(计算) 机床 强化学习 能量(信号处理) 计算机科学 批量生产 工程类 数学优化 控制工程 机械工程 人工智能 数学 电气工程 操作系统 统计
作者
Qinge Xiao,Zhile Yang,Yingfeng Zhang,Pai Zheng
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:67: 80-96 被引量:12
标识
DOI:10.1016/j.jmsy.2023.01.005
摘要

Batch machining systems are essential for improving productivity and quality, but they consume considerable amounts of energy due to the continuous interaction with machine tools, workpieces, and cutting tools. In contrast to single-piece machining that has a short production cycle, the tool wear impacts in batch machining systems on energy consumption cannot be underestimated. However, few studies have focused on adaptive process control subject to time-varying tool wear because process optimization has always been previously considered a static problem. As an alternative to metaheuristic algorithms, reinforcement learning (RL) offers an attractive means for solving such a dynamic, high-dimensional, and high-coupling problem. In the case of turning cylindrical parts, an energy-efficient decision model is developed for the process control of pass operations of batch machining. The decision variables are decoupled by reformulating the problem as the Markov decision process, wherein the tool wear experiences dynamic changes. To solve the problem, an actor-critic RL framework with multi-constraint and multi-objective design is developed. Based on the framework, a dynamic process control method is proposed where the RL agent observes workpiece features, machining requirements, and tool wear states (inputs) and adaptively selects the control parameters such as cutting speed, feed rate, and cutting rate (outputs), with the aim to conserve energy. Two application tests and comparisons against metaheuristic methods are performed. The results indicate that the method can further reduce energy by over 20% compared with energy-efficient optimization ignoring tool wear effects. The learning efficiency of RL is about three times faster than that of metaheuristics. The online sampling time is less than 0.1 millisecond, which facilitates real-time control of process parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柑橘发布了新的文献求助10
刚刚
mount完成签到,获得积分10
刚刚
今后应助易中华采纳,获得10
1秒前
YWR完成签到,获得积分10
1秒前
gqp完成签到,获得积分10
1秒前
如何才能长胖完成签到 ,获得积分10
2秒前
毕业大吉发布了新的文献求助20
2秒前
Iris完成签到,获得积分20
3秒前
Q_123发布了新的文献求助10
3秒前
akjhd完成签到,获得积分20
3秒前
lovesxj941完成签到,获得积分10
4秒前
dgfhg完成签到 ,获得积分20
4秒前
5秒前
忧伤的凝海完成签到,获得积分10
5秒前
三千港发布了新的文献求助10
5秒前
雁塔吃辣条完成签到,获得积分10
6秒前
科研通AI6应助7890733采纳,获得10
6秒前
7秒前
周周完成签到,获得积分10
7秒前
xue完成签到 ,获得积分10
7秒前
吕君完成签到,获得积分10
7秒前
科研通AI2S应助小李先绅采纳,获得10
7秒前
ellieou发布了新的文献求助10
8秒前
害羞耷发布了新的文献求助10
8秒前
粥mi发布了新的文献求助10
8秒前
bkagyin应助米丫丫米采纳,获得10
9秒前
joe完成签到,获得积分10
9秒前
阔达的扬完成签到,获得积分10
10秒前
YYYYYY完成签到,获得积分10
10秒前
要减肥冰菱完成签到,获得积分10
10秒前
mp5完成签到,获得积分10
10秒前
WJL完成签到 ,获得积分10
10秒前
酷波er应助关畅澎采纳,获得10
11秒前
11秒前
壮鹿马利根完成签到 ,获得积分10
12秒前
Meteor636完成签到 ,获得积分10
12秒前
搜集达人应助zency采纳,获得10
12秒前
倪小完成签到,获得积分10
13秒前
王诗语完成签到 ,获得积分10
13秒前
粘豆包完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568540
求助须知:如何正确求助?哪些是违规求助? 4653148
关于积分的说明 14704472
捐赠科研通 4594943
什么是DOI,文献DOI怎么找? 2521424
邀请新用户注册赠送积分活动 1493006
关于科研通互助平台的介绍 1463793