Adaptive optimal process control with actor-critic design for energy-efficient batch machining subject to time-varying tool wear

机械加工 刀具磨损 元启发式 能源消耗 过程(计算) 机床 强化学习 能量(信号处理) 计算机科学 批量生产 工程类 数学优化 控制工程 机械工程 人工智能 数学 电气工程 操作系统 统计
作者
Qinge Xiao,Zhile Yang,Yingfeng Zhang,Pai Zheng
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:67: 80-96 被引量:12
标识
DOI:10.1016/j.jmsy.2023.01.005
摘要

Batch machining systems are essential for improving productivity and quality, but they consume considerable amounts of energy due to the continuous interaction with machine tools, workpieces, and cutting tools. In contrast to single-piece machining that has a short production cycle, the tool wear impacts in batch machining systems on energy consumption cannot be underestimated. However, few studies have focused on adaptive process control subject to time-varying tool wear because process optimization has always been previously considered a static problem. As an alternative to metaheuristic algorithms, reinforcement learning (RL) offers an attractive means for solving such a dynamic, high-dimensional, and high-coupling problem. In the case of turning cylindrical parts, an energy-efficient decision model is developed for the process control of pass operations of batch machining. The decision variables are decoupled by reformulating the problem as the Markov decision process, wherein the tool wear experiences dynamic changes. To solve the problem, an actor-critic RL framework with multi-constraint and multi-objective design is developed. Based on the framework, a dynamic process control method is proposed where the RL agent observes workpiece features, machining requirements, and tool wear states (inputs) and adaptively selects the control parameters such as cutting speed, feed rate, and cutting rate (outputs), with the aim to conserve energy. Two application tests and comparisons against metaheuristic methods are performed. The results indicate that the method can further reduce energy by over 20% compared with energy-efficient optimization ignoring tool wear effects. The learning efficiency of RL is about three times faster than that of metaheuristics. The online sampling time is less than 0.1 millisecond, which facilitates real-time control of process parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冰茉莉完成签到 ,获得积分10
1秒前
胡砚之完成签到,获得积分10
1秒前
zerotwo完成签到,获得积分10
2秒前
可可豆完成签到,获得积分10
2秒前
2秒前
hanhanhan完成签到,获得积分20
3秒前
保卫时光完成签到,获得积分10
3秒前
3秒前
zcl发布了新的文献求助10
4秒前
4秒前
4秒前
情怀应助唐小颖采纳,获得10
5秒前
赘婿应助啊哦采纳,获得10
5秒前
李健的小迷弟应助zqh采纳,获得10
5秒前
木木川发布了新的文献求助10
5秒前
水博士发布了新的文献求助10
6秒前
研友_VZG7GZ应助糊涂的汽车采纳,获得10
7秒前
一线西风发布了新的文献求助10
7秒前
hanhanhan发布了新的文献求助50
7秒前
AJ发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
kkkhhh发布了新的文献求助10
9秒前
天天快乐应助SEV采纳,获得10
9秒前
悦耳安莲完成签到,获得积分20
9秒前
传奇3应助张123采纳,获得10
9秒前
zgh5615完成签到,获得积分10
9秒前
Taki发布了新的文献求助10
9秒前
星辰大海应助Duxize采纳,获得10
11秒前
11秒前
12秒前
cj发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
14秒前
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420