Adaptive optimal process control with actor-critic design for energy-efficient batch machining subject to time-varying tool wear

机械加工 刀具磨损 元启发式 能源消耗 过程(计算) 机床 强化学习 能量(信号处理) 计算机科学 批量生产 工程类 数学优化 控制工程 机械工程 人工智能 数学 电气工程 操作系统 统计
作者
Qinge Xiao,Zhile Yang,Yingfeng Zhang,Pai Zheng
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:67: 80-96 被引量:12
标识
DOI:10.1016/j.jmsy.2023.01.005
摘要

Batch machining systems are essential for improving productivity and quality, but they consume considerable amounts of energy due to the continuous interaction with machine tools, workpieces, and cutting tools. In contrast to single-piece machining that has a short production cycle, the tool wear impacts in batch machining systems on energy consumption cannot be underestimated. However, few studies have focused on adaptive process control subject to time-varying tool wear because process optimization has always been previously considered a static problem. As an alternative to metaheuristic algorithms, reinforcement learning (RL) offers an attractive means for solving such a dynamic, high-dimensional, and high-coupling problem. In the case of turning cylindrical parts, an energy-efficient decision model is developed for the process control of pass operations of batch machining. The decision variables are decoupled by reformulating the problem as the Markov decision process, wherein the tool wear experiences dynamic changes. To solve the problem, an actor-critic RL framework with multi-constraint and multi-objective design is developed. Based on the framework, a dynamic process control method is proposed where the RL agent observes workpiece features, machining requirements, and tool wear states (inputs) and adaptively selects the control parameters such as cutting speed, feed rate, and cutting rate (outputs), with the aim to conserve energy. Two application tests and comparisons against metaheuristic methods are performed. The results indicate that the method can further reduce energy by over 20% compared with energy-efficient optimization ignoring tool wear effects. The learning efficiency of RL is about three times faster than that of metaheuristics. The online sampling time is less than 0.1 millisecond, which facilitates real-time control of process parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
在水一方应助Du采纳,获得10
1秒前
Xdhcg发布了新的文献求助20
2秒前
愿好应助xukaixuan001采纳,获得10
2秒前
3秒前
3秒前
甜美白云完成签到,获得积分20
3秒前
科研通AI2S应助yueyue采纳,获得20
4秒前
JamesPei应助xieyin717采纳,获得10
4秒前
浮游应助自由蓉采纳,获得10
4秒前
啊啊啊完成签到,获得积分10
5秒前
yyf发布了新的文献求助10
5秒前
赘婿应助zhanzhanzhan采纳,获得10
5秒前
5秒前
5秒前
xiuxue424发布了新的文献求助10
6秒前
Owen应助舒心的芝麻采纳,获得10
6秒前
猛小马发布了新的文献求助10
7秒前
写得出发的中完成签到,获得积分10
7秒前
lcm完成签到,获得积分10
7秒前
浮游应助青田101采纳,获得10
8秒前
多宝完成签到,获得积分10
8秒前
英俊的铭应助美好的千凝采纳,获得10
8秒前
大模型应助甲乙丙丁采纳,获得10
8秒前
缥缈灵煌发布了新的文献求助10
8秒前
活力的亦云完成签到,获得积分10
8秒前
春天在这李完成签到,获得积分10
8秒前
酷波er应助yichuan_wangjie采纳,获得10
8秒前
djbj2022发布了新的文献求助10
9秒前
9秒前
冷静的伊完成签到,获得积分10
9秒前
麻坛宗师完成签到 ,获得积分10
9秒前
123456789完成签到,获得积分10
9秒前
liuxingyu发布了新的文献求助10
9秒前
顾矜应助周shang采纳,获得10
10秒前
苏莉婷发布了新的文献求助10
11秒前
佛系发布了新的文献求助10
11秒前
coldspringhao发布了新的文献求助10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728