亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive optimal process control with actor-critic design for energy-efficient batch machining subject to time-varying tool wear

机械加工 刀具磨损 元启发式 能源消耗 过程(计算) 机床 强化学习 能量(信号处理) 计算机科学 批量生产 工程类 数学优化 控制工程 机械工程 人工智能 数学 电气工程 操作系统 统计
作者
Qinge Xiao,Zhile Yang,Yingfeng Zhang,Pai Zheng
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:67: 80-96 被引量:10
标识
DOI:10.1016/j.jmsy.2023.01.005
摘要

Batch machining systems are essential for improving productivity and quality, but they consume considerable amounts of energy due to the continuous interaction with machine tools, workpieces, and cutting tools. In contrast to single-piece machining that has a short production cycle, the tool wear impacts in batch machining systems on energy consumption cannot be underestimated. However, few studies have focused on adaptive process control subject to time-varying tool wear because process optimization has always been previously considered a static problem. As an alternative to metaheuristic algorithms, reinforcement learning (RL) offers an attractive means for solving such a dynamic, high-dimensional, and high-coupling problem. In the case of turning cylindrical parts, an energy-efficient decision model is developed for the process control of pass operations of batch machining. The decision variables are decoupled by reformulating the problem as the Markov decision process, wherein the tool wear experiences dynamic changes. To solve the problem, an actor-critic RL framework with multi-constraint and multi-objective design is developed. Based on the framework, a dynamic process control method is proposed where the RL agent observes workpiece features, machining requirements, and tool wear states (inputs) and adaptively selects the control parameters such as cutting speed, feed rate, and cutting rate (outputs), with the aim to conserve energy. Two application tests and comparisons against metaheuristic methods are performed. The results indicate that the method can further reduce energy by over 20% compared with energy-efficient optimization ignoring tool wear effects. The learning efficiency of RL is about three times faster than that of metaheuristics. The online sampling time is less than 0.1 millisecond, which facilitates real-time control of process parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凡yeah发布了新的文献求助10
7秒前
9秒前
棠真完成签到 ,获得积分10
11秒前
28秒前
40秒前
46秒前
47秒前
Jolly发布了新的文献求助10
48秒前
拼搏小丸子完成签到 ,获得积分10
51秒前
51秒前
慕青应助科研通管家采纳,获得10
52秒前
pin发布了新的文献求助10
54秒前
xzn发布了新的文献求助10
57秒前
Jolly完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
NexusExplorer应助科研糊涂神采纳,获得10
1分钟前
小巧问芙完成签到 ,获得积分10
1分钟前
魏誉发布了新的文献求助10
1分钟前
田様应助xzn采纳,获得10
1分钟前
Ava应助魏誉采纳,获得10
1分钟前
jj完成签到 ,获得积分10
1分钟前
哇呀呀完成签到 ,获得积分10
1分钟前
彳亍完成签到 ,获得积分10
1分钟前
光亮如彤完成签到,获得积分10
1分钟前
HU完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
cadet发布了新的文献求助10
2分钟前
Akim应助wang5945采纳,获得10
2分钟前
2分钟前
小马甲应助老孟采纳,获得10
2分钟前
开心的小松鼠完成签到,获得积分10
2分钟前
2分钟前
cadet完成签到,获得积分10
2分钟前
学习多快乐完成签到 ,获得积分10
2分钟前
斯文败类应助路宝采纳,获得10
2分钟前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056425
求助须知:如何正确求助?哪些是违规求助? 2713046
关于积分的说明 7434315
捐赠科研通 2357999
什么是DOI,文献DOI怎么找? 1249197
科研通“疑难数据库(出版商)”最低求助积分说明 606972
版权声明 596195