亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of adaptive grid-based multi-objective particle swarm optimization algorithm for directional drilling trajectory design

粒子群优化 数学优化 多群优化 弹道 计算机科学 多目标优化 网格 无导数优化 全局优化 轨迹优化 帕累托原理 数学 最优控制 天文 几何学 物理
作者
Bihai Chen,Xingyue Liu,Haojie Liu,Siyi Cheng,Gongjian Wen
标识
DOI:10.1016/j.geoen.2023.211431
摘要

The parameters optimization is the key issue for directional drilling trajectory design in oil and gas fields development, and there are three main challenges in multi-objective and multi-constraint optimization: (1) how to establish a multi-objective optimization model based on geological constraints; (2) how to design an appropriate optimization algorithm and solve the optimization model effectively; (3) how to select the desired result from the obtained Pareto solution and meet the engineering requirements. To build a safe and cost-efficient directional drilling trajectory, a new multi-objective optimization model is established in this paper. The effective objective functions to evaluate the drilling trajectory are summarized as the minimum trajectory length, torque, and strain energy. Moreover, the new model takes the wellbore stability based on Mohr–Coulomb criterion as constraint to prevent the borehole from collapsing. A novel adaptive grid-based multi-objective particle swarm optimization(AGMOPSO) is presented to achieve a set of Pareto optimal solutions of the established optimization model. In this algorithm, a new particle flight mode based on arcsine function of inertia weight and Gaussian mutation strategy are introduced to further improve the global searching ability and obtain more non-inferior solutions. To ensure the uniformity of non-inferior solutions, the adaptive grid based on density control factor is designed to map the space of objective functions to the grid space and adaptively adjust the density of non-inferior solutions in the external archive. Besides, a linear weighted summation function is developed to realize leader selection and archive maintenance of non-inferior solutions. The optimization results on the Pareto front indicate that AGMOPSO has better convergence and uniformity than the unmodified algorithm and reported results. To be concluded, AGMOPSO achieves a better optimization performance and obtain a better trajectory for drilling trajectory optimization model with geological constraints, which has good practical and theoretical significance for directional drilling trajectory optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LXL完成签到,获得积分10
1秒前
科研通AI2S应助zulpiye采纳,获得10
1秒前
慕青应助benbenca采纳,获得40
1秒前
科研通AI2S应助繁荣的又夏采纳,获得10
3秒前
共享精神应助tw1999采纳,获得10
3秒前
3秒前
4秒前
wuye完成签到,获得积分20
8秒前
10秒前
胡呵呵发布了新的文献求助10
11秒前
11秒前
16秒前
肉丸完成签到 ,获得积分10
19秒前
科研通AI2S应助如意歌曲采纳,获得10
19秒前
徐小锤完成签到 ,获得积分10
20秒前
23秒前
26秒前
30秒前
qingxinhuo完成签到 ,获得积分10
36秒前
科研通AI2S应助陈杰采纳,获得10
38秒前
44秒前
wuye发布了新的文献求助10
44秒前
李小猫完成签到,获得积分10
47秒前
李小猫发布了新的文献求助10
51秒前
51秒前
53秒前
Loukas完成签到 ,获得积分10
55秒前
PAIDAXXXX发布了新的文献求助10
55秒前
57秒前
57秒前
59秒前
hahahan完成签到 ,获得积分10
1分钟前
Ethan应助科研通管家采纳,获得10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
1分钟前
ddd发布了新的文献求助10
1分钟前
1分钟前
轻松戎完成签到,获得积分10
1分钟前
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229656
求助须知:如何正确求助?哪些是违规求助? 2877200
关于积分的说明 8198471
捐赠科研通 2544654
什么是DOI,文献DOI怎么找? 1374517
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621774