Application of adaptive grid-based multi-objective particle swarm optimization algorithm for directional drilling trajectory design

粒子群优化 数学优化 多群优化 弹道 计算机科学 多目标优化 网格 无导数优化 全局优化 轨迹优化 帕累托原理 控制理论(社会学) 数学 最优控制 控制(管理) 天文 人工智能 物理 几何学
作者
Bihai Chen,Guojun Wen,Xin He,Xingyue Liu,Haojie Liu,Siyi Cheng
标识
DOI:10.1016/j.geoen.2023.211431
摘要

The parameters optimization is the key issue for directional drilling trajectory design in oil and gas fields development, and there are three main challenges in multi-objective and multi-constraint optimization: (1) how to establish a multi-objective optimization model based on geological constraints; (2) how to design an appropriate optimization algorithm and solve the optimization model effectively; (3) how to select the desired result from the obtained Pareto solution and meet the engineering requirements. To build a safe and cost-efficient directional drilling trajectory, a new multi-objective optimization model is established in this paper. The effective objective functions to evaluate the drilling trajectory are summarized as the minimum trajectory length, torque, and strain energy. Moreover, the new model takes the wellbore stability based on Mohr–Coulomb criterion as constraint to prevent the borehole from collapsing. A novel adaptive grid-based multi-objective particle swarm optimization(AGMOPSO) is presented to achieve a set of Pareto optimal solutions of the established optimization model. In this algorithm, a new particle flight mode based on arcsine function of inertia weight and Gaussian mutation strategy are introduced to further improve the global searching ability and obtain more non-inferior solutions. To ensure the uniformity of non-inferior solutions, the adaptive grid based on density control factor is designed to map the space of objective functions to the grid space and adaptively adjust the density of non-inferior solutions in the external archive. Besides, a linear weighted summation function is developed to realize leader selection and archive maintenance of non-inferior solutions. The optimization results on the Pareto front indicate that AGMOPSO has better convergence and uniformity than the unmodified algorithm and reported results. To be concluded, AGMOPSO achieves a better optimization performance and obtain a better trajectory for drilling trajectory optimization model with geological constraints, which has good practical and theoretical significance for directional drilling trajectory optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蓝天应助威武的夜绿采纳,获得30
刚刚
刚刚
咕咕咕完成签到,获得积分10
刚刚
今后应助过柱菜鸟采纳,获得10
刚刚
乐乐应助smm采纳,获得10
刚刚
1秒前
繁荣的千亦完成签到,获得积分10
1秒前
紫色水晶之恋完成签到,获得积分10
1秒前
毛毛虫发布了新的文献求助10
2秒前
2秒前
ding应助乐观的镜子采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
鲤鱼谷秋发布了新的文献求助10
4秒前
帅气善斓完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
丰富的河马完成签到,获得积分10
6秒前
小何发布了新的文献求助10
6秒前
6秒前
可爱的函函应助刘胖胖采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
zzz发布了新的文献求助20
7秒前
肖邦发布了新的文献求助10
8秒前
ff发布了新的文献求助10
8秒前
善学以致用应助赛特新思采纳,获得10
8秒前
刘柑橘完成签到,获得积分10
8秒前
ju00发布了新的文献求助10
9秒前
木木完成签到,获得积分10
9秒前
帅气善斓发布了新的文献求助20
10秒前
10秒前
周琦发布了新的文献求助10
10秒前
dew应助魏欣娜采纳,获得10
10秒前
搞怪人雄发布了新的文献求助10
10秒前
虚心焦完成签到 ,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106