亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of adaptive grid-based multi-objective particle swarm optimization algorithm for directional drilling trajectory design

粒子群优化 数学优化 多群优化 弹道 计算机科学 多目标优化 网格 无导数优化 全局优化 轨迹优化 帕累托原理 数学 最优控制 天文 几何学 物理
作者
Bihai Chen,Xingyue Liu,Haojie Liu,Siyi Cheng,Gongjian Wen
标识
DOI:10.1016/j.geoen.2023.211431
摘要

The parameters optimization is the key issue for directional drilling trajectory design in oil and gas fields development, and there are three main challenges in multi-objective and multi-constraint optimization: (1) how to establish a multi-objective optimization model based on geological constraints; (2) how to design an appropriate optimization algorithm and solve the optimization model effectively; (3) how to select the desired result from the obtained Pareto solution and meet the engineering requirements. To build a safe and cost-efficient directional drilling trajectory, a new multi-objective optimization model is established in this paper. The effective objective functions to evaluate the drilling trajectory are summarized as the minimum trajectory length, torque, and strain energy. Moreover, the new model takes the wellbore stability based on Mohr–Coulomb criterion as constraint to prevent the borehole from collapsing. A novel adaptive grid-based multi-objective particle swarm optimization(AGMOPSO) is presented to achieve a set of Pareto optimal solutions of the established optimization model. In this algorithm, a new particle flight mode based on arcsine function of inertia weight and Gaussian mutation strategy are introduced to further improve the global searching ability and obtain more non-inferior solutions. To ensure the uniformity of non-inferior solutions, the adaptive grid based on density control factor is designed to map the space of objective functions to the grid space and adaptively adjust the density of non-inferior solutions in the external archive. Besides, a linear weighted summation function is developed to realize leader selection and archive maintenance of non-inferior solutions. The optimization results on the Pareto front indicate that AGMOPSO has better convergence and uniformity than the unmodified algorithm and reported results. To be concluded, AGMOPSO achieves a better optimization performance and obtain a better trajectory for drilling trajectory optimization model with geological constraints, which has good practical and theoretical significance for directional drilling trajectory optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十二倍根号二完成签到,获得积分20
11秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
SW完成签到,获得积分10
43秒前
CipherSage应助SW采纳,获得10
1分钟前
1分钟前
SW发布了新的文献求助10
1分钟前
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
zsmj23完成签到 ,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
研小小小小白完成签到,获得积分10
2分钟前
111111111发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
sofardli发布了新的文献求助20
2分钟前
2分钟前
nanali19发布了新的文献求助10
2分钟前
3分钟前
nanali19完成签到,获得积分10
3分钟前
万能图书馆应助sofardli采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
曦麟完成签到 ,获得积分10
3分钟前
3分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
4分钟前
Lin发布了新的文献求助10
4分钟前
4分钟前
SCINEXUS完成签到,获得积分0
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
老迟到的梦旋完成签到 ,获得积分10
5分钟前
5分钟前
负责以山完成签到 ,获得积分10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
cc应助科研通管家采纳,获得10
5分钟前
一只小锦鲤完成签到 ,获得积分10
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957065
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111255
捐赠科研通 3234124
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264