MEDL‐Net: A model‐based neural network for MRI reconstruction with enhanced deep learned regularizers

计算机科学 灵活性(工程) 网(多面体) 人工神经网络 人工智能 图像(数学) 模式识别(心理学) 深层神经网络 功能(生物学) 算法 数学 几何学 进化生物学 生物 统计
作者
Xiaoyu Qiao,Yuping Huang,Weisheng Li
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:89 (5): 2062-2075 被引量:3
标识
DOI:10.1002/mrm.29575
摘要

Purpose To improve the MRI reconstruction performance of model‐based networks and to alleviate their large demand for GPU memory. Methods A model‐based neural network with enhanced deep learned regularizers (MEDL‐Net) was proposed. The MEDL‐Net is separated into several submodules, each of which consists of several cascades to mimic the optimization steps in conventional MRI reconstruction algorithms. Information from shallow cascades is densely connected to latter ones to enrich their inputs in each submodule, and additional revising blocks (RB) are stacked at the end of the submodules to bring more flexibility. Moreover, a composition loss function was designed to explicitly supervise RBs. Results Network performance was evaluated on a publicly available dataset. The MEDL‐Net quantitatively outperforms the state‐of‐the‐art methods on different MR image sequences with different acceleration rates (four‐fold and six‐fold). Moreover, the reconstructed images showed that the detailed textures are better preserved. In addition, fewer cascades are required when achieving the same reconstruction results compared with other model‐based networks. Conclusion In this study, a more efficient model‐based deep network was proposed to reconstruct MR images. The experimental results indicate that the proposed method improves reconstruction performance with fewer cascades, which alleviates the large demand for GPU memory.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
刚刚
诚心的源智完成签到 ,获得积分10
1秒前
1秒前
2以李完成签到,获得积分10
1秒前
2秒前
2秒前
orixero应助Mr.Ren采纳,获得10
2秒前
2秒前
cqh完成签到 ,获得积分10
2秒前
3秒前
caixiayin发布了新的文献求助10
3秒前
4秒前
5秒前
Akim应助LY采纳,获得10
5秒前
小蘑菇应助刚刚好采纳,获得10
6秒前
hu发布了新的文献求助10
6秒前
wsh071117发布了新的文献求助10
6秒前
稚初完成签到,获得积分10
6秒前
fjkssadjk发布了新的文献求助10
7秒前
到灯塔去发布了新的文献求助10
8秒前
8秒前
9秒前
veblenadam发布了新的文献求助10
10秒前
单三毒完成签到,获得积分10
10秒前
11秒前
在水一方应助wuyt采纳,获得10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
搜集达人应助饶天源采纳,获得10
13秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
sisiguai发布了新的文献求助10
15秒前
15秒前
16秒前
sisyphus发布了新的文献求助10
16秒前
梁芳云完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711503
求助须知:如何正确求助?哪些是违规求助? 5204319
关于积分的说明 15264554
捐赠科研通 4863764
什么是DOI,文献DOI怎么找? 2610925
邀请新用户注册赠送积分活动 1561295
关于科研通互助平台的介绍 1518636