MEDL‐Net: A model‐based neural network for MRI reconstruction with enhanced deep learned regularizers

计算机科学 灵活性(工程) 网(多面体) 人工神经网络 人工智能 图像(数学) 模式识别(心理学) 深层神经网络 功能(生物学) 算法 数学 几何学 进化生物学 生物 统计
作者
Xiaoyu Qiao,Yuping Huang,Weisheng Li
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:89 (5): 2062-2075 被引量:3
标识
DOI:10.1002/mrm.29575
摘要

Purpose To improve the MRI reconstruction performance of model‐based networks and to alleviate their large demand for GPU memory. Methods A model‐based neural network with enhanced deep learned regularizers (MEDL‐Net) was proposed. The MEDL‐Net is separated into several submodules, each of which consists of several cascades to mimic the optimization steps in conventional MRI reconstruction algorithms. Information from shallow cascades is densely connected to latter ones to enrich their inputs in each submodule, and additional revising blocks (RB) are stacked at the end of the submodules to bring more flexibility. Moreover, a composition loss function was designed to explicitly supervise RBs. Results Network performance was evaluated on a publicly available dataset. The MEDL‐Net quantitatively outperforms the state‐of‐the‐art methods on different MR image sequences with different acceleration rates (four‐fold and six‐fold). Moreover, the reconstructed images showed that the detailed textures are better preserved. In addition, fewer cascades are required when achieving the same reconstruction results compared with other model‐based networks. Conclusion In this study, a more efficient model‐based deep network was proposed to reconstruct MR images. The experimental results indicate that the proposed method improves reconstruction performance with fewer cascades, which alleviates the large demand for GPU memory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹿茸与共发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
2秒前
3秒前
口口完成签到 ,获得积分10
3秒前
小星星发布了新的文献求助10
6秒前
6秒前
346952262发布了新的文献求助10
7秒前
小蘑菇应助黄油曲奇Nana采纳,获得30
7秒前
司连喜发布了新的文献求助10
7秒前
7秒前
nn发布了新的文献求助10
7秒前
纯白汉玉完成签到,获得积分10
8秒前
古芍昂发布了新的文献求助10
8秒前
权志龙发布了新的文献求助20
9秒前
10秒前
11秒前
怡春院李老鸨完成签到,获得积分10
11秒前
顾矜应助Frank采纳,获得10
11秒前
李健的粉丝团团长应助zhb采纳,获得10
11秒前
盈滢完成签到 ,获得积分10
14秒前
Akim应助古芍昂采纳,获得10
15秒前
15秒前
nn完成签到,获得积分10
16秒前
黄黄黄应助西西里柠檬采纳,获得100
18秒前
小星星完成签到,获得积分10
18秒前
20秒前
20秒前
柠m发布了新的文献求助100
20秒前
完美世界应助lan采纳,获得10
21秒前
司连喜完成签到,获得积分10
21秒前
搜集达人应助科研通管家采纳,获得10
22秒前
赘婿应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
orixero应助科研通管家采纳,获得10
22秒前
华仔应助科研通管家采纳,获得10
22秒前
CyrusSo524应助科研通管家采纳,获得10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998688
求助须知:如何正确求助?哪些是违规求助? 3538149
关于积分的说明 11273517
捐赠科研通 3277099
什么是DOI,文献DOI怎么找? 1807405
邀请新用户注册赠送积分活动 883855
科研通“疑难数据库(出版商)”最低求助积分说明 810070