MEDL‐Net: A model‐based neural network for MRI reconstruction with enhanced deep learned regularizers

计算机科学 灵活性(工程) 网(多面体) 人工神经网络 人工智能 图像(数学) 模式识别(心理学) 深层神经网络 功能(生物学) 算法 数学 几何学 进化生物学 生物 统计
作者
Xiaoyu Qiao,Yuping Huang,Weisheng Li
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:89 (5): 2062-2075 被引量:3
标识
DOI:10.1002/mrm.29575
摘要

Purpose To improve the MRI reconstruction performance of model‐based networks and to alleviate their large demand for GPU memory. Methods A model‐based neural network with enhanced deep learned regularizers (MEDL‐Net) was proposed. The MEDL‐Net is separated into several submodules, each of which consists of several cascades to mimic the optimization steps in conventional MRI reconstruction algorithms. Information from shallow cascades is densely connected to latter ones to enrich their inputs in each submodule, and additional revising blocks (RB) are stacked at the end of the submodules to bring more flexibility. Moreover, a composition loss function was designed to explicitly supervise RBs. Results Network performance was evaluated on a publicly available dataset. The MEDL‐Net quantitatively outperforms the state‐of‐the‐art methods on different MR image sequences with different acceleration rates (four‐fold and six‐fold). Moreover, the reconstructed images showed that the detailed textures are better preserved. In addition, fewer cascades are required when achieving the same reconstruction results compared with other model‐based networks. Conclusion In this study, a more efficient model‐based deep network was proposed to reconstruct MR images. The experimental results indicate that the proposed method improves reconstruction performance with fewer cascades, which alleviates the large demand for GPU memory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
两块应助啊九lili采纳,获得10
刚刚
薄荷小新完成签到 ,获得积分0
2秒前
伶俐紫发布了新的文献求助10
2秒前
是阮软不是懒懒完成签到 ,获得积分10
3秒前
杰2580发布了新的文献求助10
5秒前
李木禾完成签到 ,获得积分10
5秒前
大气夜山完成签到 ,获得积分10
5秒前
魔山西红柿完成签到,获得积分10
6秒前
没有名字完成签到 ,获得积分10
12秒前
青黛完成签到 ,获得积分10
12秒前
Dank1ng完成签到,获得积分10
13秒前
杰2580完成签到,获得积分10
14秒前
大宝剑2号完成签到 ,获得积分10
15秒前
能干妙竹完成签到,获得积分10
16秒前
小珂完成签到,获得积分10
19秒前
皮皮虾完成签到 ,获得积分10
21秒前
22秒前
不能吃太饱完成签到 ,获得积分10
24秒前
buqi发布了新的文献求助10
25秒前
伶俐紫完成签到,获得积分10
26秒前
26秒前
27秒前
Annie发布了新的文献求助20
27秒前
二队淼队长完成签到,获得积分10
28秒前
我是老大应助清沧炽魂采纳,获得10
28秒前
彳亍宣完成签到 ,获得积分10
29秒前
缥缈的闭月完成签到,获得积分10
32秒前
buqi完成签到,获得积分10
32秒前
孔wj完成签到,获得积分10
33秒前
縤雨完成签到 ,获得积分10
33秒前
33秒前
Tao完成签到,获得积分10
38秒前
38秒前
黄景滨完成签到 ,获得积分10
39秒前
40秒前
wwrjj完成签到,获得积分10
41秒前
liu完成签到,获得积分10
41秒前
孤独听雨的猫完成签到 ,获得积分10
43秒前
科研通AI5应助科研通管家采纳,获得10
43秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212499
求助须知:如何正确求助?哪些是违规求助? 4388659
关于积分的说明 13664251
捐赠科研通 4249165
什么是DOI,文献DOI怎么找? 2331448
邀请新用户注册赠送积分活动 1329148
关于科研通互助平台的介绍 1282561