Vacuum-Dried and Intrinsic Photothermal Phenolic Carbon Aerogel from Coal Tar Rich in Polycyclic Aromatics for Efficient Solar Steam Generation

气凝胶 材料科学 碳化 化学工程 碳纤维 碳纳米管 太阳能 吸收(声学) 光热治疗 纳米技术 复合材料 扫描电子显微镜 生态学 生物 复合数 工程类
作者
Zhan‐Ku Li,Xiangyang Xie,Jinyuan Cheng,Hong-Lei Yan,Lin Peng,Zhiping Lei,Jingchong Yan,Shibiao Ren,Zhicai Wang,Hengfu Shui
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:62 (3): 1450-1462 被引量:6
标识
DOI:10.1021/acs.iecr.2c04430
摘要

Solar steam generation has been proven to be an efficient way for obtaining clean water from seawater or polluted water with solar energy as the only energy input. Due to the high porosity and light absorption, tunable micro–nano structure, and excellent thermal insulation, carbon aerogels as photothermal materials have attracted much attention. However, requirements of freeze drying and additional light absorbers as well as low strength restrict the large-scale utilization of carbon aerogels. Herein, self-floating and low-cost coal tar-based phenolic carbon aerogels (CPCAs) were fabricated using a facile method, that is, polymerization/gelation, vacuum drying, and carbonization. CPCAs with comparable light absorption (96.6%) to carbon nanotube can be used as intrinsic photothermal materials owing to the existence of considerable polycyclic aromatics in coal tar. In addition, CPCAs possess hierarchical porous architectures and abundant polar functional groups, delivering fast water transportation. Moreover, the latent heat is obviously reduced due to the regulation of the water state. Therefore, the evaporation rate can reach up to 2.23 kg m–2 h–1 with an energy efficiency of 92.5% under 1 sun employing a CPCA as a photothermal material. Additionally, CPCAs with high strength (more than 4 MPa under 90% compressive strain) have versatile applications in seawater desalination and industrial wastewater for long-term stability. The excellent performance of CPCAs was tentatively revealed by density functional theory and COMSOL calculation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助头与木采纳,获得10
刚刚
2秒前
加菲丰丰举报虚幻凌珍求助涉嫌违规
3秒前
ningguizhang完成签到,获得积分10
3秒前
科研通AI2S应助聪明的惜芹采纳,获得10
6秒前
英姑应助雨淋沐风采纳,获得10
6秒前
6秒前
赵焱峥完成签到 ,获得积分10
10秒前
10秒前
秋霜玉发布了新的文献求助10
11秒前
香蕉觅云应助volition采纳,获得10
12秒前
加菲丰丰举报容荣求助涉嫌违规
13秒前
guchenniub发布了新的文献求助10
15秒前
李还好完成签到,获得积分10
16秒前
王烨完成签到 ,获得积分10
17秒前
20秒前
20秒前
Jessica英语好完成签到 ,获得积分10
21秒前
22秒前
quan发布了新的文献求助10
23秒前
苏楠发布了新的文献求助10
24秒前
TOMMY233发布了新的文献求助10
25秒前
加菲丰丰举报yuanyuan求助涉嫌违规
25秒前
28秒前
戴戴完成签到 ,获得积分10
30秒前
宁琳发布了新的文献求助10
30秒前
沐颜完成签到,获得积分10
32秒前
zhurui发布了新的文献求助10
32秒前
华仔应助gyx采纳,获得10
33秒前
iVANPENNY应助王烨采纳,获得10
34秒前
TOMMY233完成签到,获得积分10
36秒前
大模型应助quan采纳,获得10
37秒前
加菲丰丰举报woollen2022求助涉嫌违规
37秒前
38秒前
39秒前
沐颜发布了新的文献求助10
39秒前
渐渐的完成签到,获得积分10
40秒前
秋霜玉关注了科研通微信公众号
40秒前
之之完成签到,获得积分10
41秒前
44秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316283
求助须知:如何正确求助?哪些是违规求助? 2948016
关于积分的说明 8538976
捐赠科研通 2624019
什么是DOI,文献DOI怎么找? 1435638
科研通“疑难数据库(出版商)”最低求助积分说明 665653
邀请新用户注册赠送积分活动 651512